{"title":"珠穆朗玛峰绒布江流域冰川水系沉积物中产甲烷古菌及其热响应研究。","authors":"Wei Ma, Miao Lin, Peihua Shen, Hongfei Chi, Weizhen Zhang, Jingyi Zhu, Shaoyi Tian, Pengfei Liu","doi":"10.1093/femsec/fiaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038898/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest.\",\"authors\":\"Wei Ma, Miao Lin, Peihua Shen, Hongfei Chi, Weizhen Zhang, Jingyi Zhu, Shaoyi Tian, Pengfei Liu\",\"doi\":\"10.1093/femsec/fiaf044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest.
Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms