珠穆朗玛峰绒布江流域冰川水系沉积物中产甲烷古菌及其热响应研究。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Wei Ma, Miao Lin, Peihua Shen, Hongfei Chi, Weizhen Zhang, Jingyi Zhu, Shaoyi Tian, Pengfei Liu
{"title":"珠穆朗玛峰绒布江流域冰川水系沉积物中产甲烷古菌及其热响应研究。","authors":"Wei Ma, Miao Lin, Peihua Shen, Hongfei Chi, Weizhen Zhang, Jingyi Zhu, Shaoyi Tian, Pengfei Liu","doi":"10.1093/femsec/fiaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038898/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest.\",\"authors\":\"Wei Ma, Miao Lin, Peihua Shen, Hongfei Chi, Weizhen Zhang, Jingyi Zhu, Shaoyi Tian, Pengfei Liu\",\"doi\":\"10.1093/femsec/fiaf044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冰川补给河流(GFS)是温室气体甲烷的紧急来源,沉积物中的产甲烷古细菌对河流甲烷排放有很大贡献。然而,对GFS沉积物中产甲烷群落及其关键环境驱动因素了解甚少。本研究通过5°C和15°C厌氧微生物培养,分析了珠穆朗玛峰绒布江流域河流沉积物的产甲烷群落及其温度响应。发现了多种甲烷菌,包括醋酸裂解型、氢营养型和氢依赖型的甲基营养型。在不同海拔高度均检测到大量甲烷和二氧化碳产量,且在15°C时显著增加,且甲烷和二氧化碳产量与海拔高度呈负相关。CO2产量的温度敏感性也与海拔高度呈负相关。在长期孵育过程中,产甲烷菌显著增加,在古菌群落中占主导地位。在15℃条件下,几个产甲烷类群的相对丰度与海拔高度呈显著正相关,分别为Methanomassiliicoccaceae和Methanoregulaceae,与Methanocellaceae呈显著负相关。除海拔高度外,磷、碳氮比和pH也会影响产甲烷结构、甲烷和CO2产量以及温度敏感性。该研究为GFS沉积物中产甲烷菌和甲烷生成提供了新的见解,提高了我们对GFS碳循环及其对气候变化的潜在响应的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest.

Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信