Wenting Qi, Hanghang Liu, Huaze Liu, Yuxuan Guo, Li Wu, Chongyun Bao, Xian Liu
{"title":"低温大气等离子体和纳米羟基磷灰石协同诱导细胞凋亡选择性抑制口腔鳞状细胞癌肿瘤微环境。","authors":"Wenting Qi, Hanghang Liu, Huaze Liu, Yuxuan Guo, Li Wu, Chongyun Bao, Xian Liu","doi":"10.1111/cpr.70041","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH<sub>2</sub>-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH<sub>2</sub>-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH<sub>2</sub>-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH<sub>2</sub>-nHA amplifies intracellular calcium ion (Ca<sup>2+</sup>) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH<sub>2</sub>-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70041"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment.\",\"authors\":\"Wenting Qi, Hanghang Liu, Huaze Liu, Yuxuan Guo, Li Wu, Chongyun Bao, Xian Liu\",\"doi\":\"10.1111/cpr.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH<sub>2</sub>-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH<sub>2</sub>-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH<sub>2</sub>-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH<sub>2</sub>-nHA amplifies intracellular calcium ion (Ca<sup>2+</sup>) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH<sub>2</sub>-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70041\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70041\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment.
Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH2-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH2-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH2-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH2-nHA amplifies intracellular calcium ion (Ca2+) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH2-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.