Emil De Borger, Dick van Oevelen, Ninon Mavraki, Annelies De Backer, Ulrike Braeckman, Karline Soetaert, Jan Vanaverbeke
{"title":"海上风电场通过加强悬浮馈线途径来改变沿海食物网的动态。","authors":"Emil De Borger, Dick van Oevelen, Ninon Mavraki, Annelies De Backer, Ulrike Braeckman, Karline Soetaert, Jan Vanaverbeke","doi":"10.1038/s43247-025-02253-w","DOIUrl":null,"url":null,"abstract":"<p><p>Given the global offshore wind farm (OWF) proliferation, we investigated the impact of OWFs on the marine food web. Using linear inverse modelling (LIM), we compared the OWF food web with two soft-sediment food webs nearby. Novel in situ data on species biomass and their isotopic composition were combined with literature data to construct food webs. Our findings highlight the prominent role of hard-substrate species on turbine foundations as organic material inputs for the food web. Hard substrate species account for approximately 26% of food source uptake from the water column and increase carbon deposition on the surrounding seafloor by ~10%. OWFs facilitate a novel food web with a higher productivity than expected based on standing biomass alone, as a result of numerous interactions between a diverse species community. Our study underscores profound effects of OWFs on marine ecosystems, suggesting the need for further research into their ecological impacts.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"330"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Offshore wind farms modify coastal food web dynamics by enhancing suspension feeder pathways.\",\"authors\":\"Emil De Borger, Dick van Oevelen, Ninon Mavraki, Annelies De Backer, Ulrike Braeckman, Karline Soetaert, Jan Vanaverbeke\",\"doi\":\"10.1038/s43247-025-02253-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the global offshore wind farm (OWF) proliferation, we investigated the impact of OWFs on the marine food web. Using linear inverse modelling (LIM), we compared the OWF food web with two soft-sediment food webs nearby. Novel in situ data on species biomass and their isotopic composition were combined with literature data to construct food webs. Our findings highlight the prominent role of hard-substrate species on turbine foundations as organic material inputs for the food web. Hard substrate species account for approximately 26% of food source uptake from the water column and increase carbon deposition on the surrounding seafloor by ~10%. OWFs facilitate a novel food web with a higher productivity than expected based on standing biomass alone, as a result of numerous interactions between a diverse species community. Our study underscores profound effects of OWFs on marine ecosystems, suggesting the need for further research into their ecological impacts.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"330\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02253-w\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02253-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Offshore wind farms modify coastal food web dynamics by enhancing suspension feeder pathways.
Given the global offshore wind farm (OWF) proliferation, we investigated the impact of OWFs on the marine food web. Using linear inverse modelling (LIM), we compared the OWF food web with two soft-sediment food webs nearby. Novel in situ data on species biomass and their isotopic composition were combined with literature data to construct food webs. Our findings highlight the prominent role of hard-substrate species on turbine foundations as organic material inputs for the food web. Hard substrate species account for approximately 26% of food source uptake from the water column and increase carbon deposition on the surrounding seafloor by ~10%. OWFs facilitate a novel food web with a higher productivity than expected based on standing biomass alone, as a result of numerous interactions between a diverse species community. Our study underscores profound effects of OWFs on marine ecosystems, suggesting the need for further research into their ecological impacts.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.