Hai-Ruo Li, Xue-Zhuo Jing, Chao-Yue Zhao, Cheng-Peng Li, Ya-Qian Lan
{"title":"用于核废水深度净化的结晶多孔框架微珠的简易结构。","authors":"Hai-Ruo Li, Xue-Zhuo Jing, Chao-Yue Zhao, Cheng-Peng Li, Ya-Qian Lan","doi":"10.1093/nsr/nwaf080","DOIUrl":null,"url":null,"abstract":"<p><p>Traces of radionuclide residuals in ground water, with combined radiotoxicity and chemotoxicity, poses a tremendous threat to human health and the environment. Crystalline porous frameworks (CPFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated considerable promise as efficient adsorbents for deep purification processes. However, their microcrystalline nature often limits their practicality for industrial-scale applications. In this study, we present a facile and scalable structuring strategy to shape 17 CPFs into 34 hydrophilic and hydrophobic microbead composites using poly(acrylic acid) (PAA)-sodium alginate and polyether sulfone (PES) as co-polymers, respectively. To validate the effectiveness of this approach, the beads were employed for the sequestration of ReO<sub>4</sub> <sup>-</sup> (a nonradioactive surrogate of <sup>99</sup>TcO<sub>4</sub> <sup>-</sup>) from contaminated tap water and simulated Hanford low-activity waste (LAW). Notably, they achieved one of the highest levels of purification in treating pre-treated LAW streams, allowing purification of drinking water to nearly 5000 times their own weight under continuous flow conditions. The purified water contained only 0.026 ppb of Tc (calculated from Re), meeting both WHO (0.159 ppb) and U.S. EPA (0.053 ppb) drinking water standards. Furthermore, the beads can be conveniently and rapidly regenerated through cycling. This study provides a universal structuring strategy of CPF beads for deep purification of nuclear wastewater.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf080"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983684/pdf/","citationCount":"0","resultStr":"{\"title\":\"Facile structuring of crystalline porous framework beads for deep purification of nuclear wastewater.\",\"authors\":\"Hai-Ruo Li, Xue-Zhuo Jing, Chao-Yue Zhao, Cheng-Peng Li, Ya-Qian Lan\",\"doi\":\"10.1093/nsr/nwaf080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traces of radionuclide residuals in ground water, with combined radiotoxicity and chemotoxicity, poses a tremendous threat to human health and the environment. Crystalline porous frameworks (CPFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated considerable promise as efficient adsorbents for deep purification processes. However, their microcrystalline nature often limits their practicality for industrial-scale applications. In this study, we present a facile and scalable structuring strategy to shape 17 CPFs into 34 hydrophilic and hydrophobic microbead composites using poly(acrylic acid) (PAA)-sodium alginate and polyether sulfone (PES) as co-polymers, respectively. To validate the effectiveness of this approach, the beads were employed for the sequestration of ReO<sub>4</sub> <sup>-</sup> (a nonradioactive surrogate of <sup>99</sup>TcO<sub>4</sub> <sup>-</sup>) from contaminated tap water and simulated Hanford low-activity waste (LAW). Notably, they achieved one of the highest levels of purification in treating pre-treated LAW streams, allowing purification of drinking water to nearly 5000 times their own weight under continuous flow conditions. The purified water contained only 0.026 ppb of Tc (calculated from Re), meeting both WHO (0.159 ppb) and U.S. EPA (0.053 ppb) drinking water standards. Furthermore, the beads can be conveniently and rapidly regenerated through cycling. This study provides a universal structuring strategy of CPF beads for deep purification of nuclear wastewater.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 5\",\"pages\":\"nwaf080\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf080\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf080","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Facile structuring of crystalline porous framework beads for deep purification of nuclear wastewater.
Traces of radionuclide residuals in ground water, with combined radiotoxicity and chemotoxicity, poses a tremendous threat to human health and the environment. Crystalline porous frameworks (CPFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated considerable promise as efficient adsorbents for deep purification processes. However, their microcrystalline nature often limits their practicality for industrial-scale applications. In this study, we present a facile and scalable structuring strategy to shape 17 CPFs into 34 hydrophilic and hydrophobic microbead composites using poly(acrylic acid) (PAA)-sodium alginate and polyether sulfone (PES) as co-polymers, respectively. To validate the effectiveness of this approach, the beads were employed for the sequestration of ReO4- (a nonradioactive surrogate of 99TcO4-) from contaminated tap water and simulated Hanford low-activity waste (LAW). Notably, they achieved one of the highest levels of purification in treating pre-treated LAW streams, allowing purification of drinking water to nearly 5000 times their own weight under continuous flow conditions. The purified water contained only 0.026 ppb of Tc (calculated from Re), meeting both WHO (0.159 ppb) and U.S. EPA (0.053 ppb) drinking water standards. Furthermore, the beads can be conveniently and rapidly regenerated through cycling. This study provides a universal structuring strategy of CPF beads for deep purification of nuclear wastewater.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.