Farkhanada Naz, Muhammad Arif, Tan Xue, Yangyi Chen, Shahid Ullah Khan, Li Changxiao
{"title":"三峡库区人工修复植被细菌群落与土壤功能。","authors":"Farkhanada Naz, Muhammad Arif, Tan Xue, Yangyi Chen, Shahid Ullah Khan, Li Changxiao","doi":"10.3389/fpls.2025.1550306","DOIUrl":null,"url":null,"abstract":"<p><p>Riparian zones maintain biodiversity, cyclic nutrients, and regulate water quality. However, their stability is increasingly threatened by human activities such as dam construction and climate variability. This study focuses on the riparian zones of the Three Gorges Dam Reservoir (TGDR), a region marked by fluctuating water levels and a subtropical southeast monsoon climate. We investigated the seasonal and vegetation-specific dynamics of soil properties and microbial communities in riparian zones dominated by artificially remediated plants (ARPs) in the TGDR. The selected ARP species included the herbaceous <i>Cynodon dactylon</i> (CD) and <i>Hemarthria altissima</i> (HA), known for their capacity for rapid soil stabilization, and the tree species <i>Salix matsudana</i> (SM) and <i>Taxodium distichum</i> (TD), which enhance nutrient cycling through litter inputs and root exudates. These species were evaluated across spring (T1), summer (T2), and autumn (T3). Our analysis of 360 soil samples led to the generation of high-quality sequences that provided insights into microbial diversity. Principal component analysis identified organic matter, ammonium nitrogen, and total nitrogen as the main contributors to soil property variance, explaining 53.68% in T1, 51.52% in T2, and 56.37% in T3 of the variance (p < 0.01). Correlation analysis highlighted a positive relationship between soil pH and <i>Nitrospirae</i> (r = 0.603) and <i>Proteobacteria</i> (r = 0.558). Enzyme activity varied by season, with acid phosphatase activity peaking in T3 and invertase activity highest in T1. This study also made functional predictions and identified pathways pertinent to metabolism, genetic information processing, and environmental signal transduction. There were seasonal shifts in metabolic pathways, such as an increase in carbohydrate metabolism in T3 via TD. In addition, there was a rise in amino acid metabolism in T3 via CD. Our assessment of microbial diversity uncovered 68 bacterial phyla, with <i>Proteobacteria</i> and <i>Acidobacteria</i> emerging as the dominant taxa. The results indicate that ARPs positively influence microbial health, nutrient cycling, and overall ecosystem integrity. These findings hold significant implications for riparian ecosystem restoration in regions experiencing environmental changes.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1550306"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacterial communities and soil functionality in artificially remediated vegetation of the three gorges reservoir zone.\",\"authors\":\"Farkhanada Naz, Muhammad Arif, Tan Xue, Yangyi Chen, Shahid Ullah Khan, Li Changxiao\",\"doi\":\"10.3389/fpls.2025.1550306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riparian zones maintain biodiversity, cyclic nutrients, and regulate water quality. However, their stability is increasingly threatened by human activities such as dam construction and climate variability. This study focuses on the riparian zones of the Three Gorges Dam Reservoir (TGDR), a region marked by fluctuating water levels and a subtropical southeast monsoon climate. We investigated the seasonal and vegetation-specific dynamics of soil properties and microbial communities in riparian zones dominated by artificially remediated plants (ARPs) in the TGDR. The selected ARP species included the herbaceous <i>Cynodon dactylon</i> (CD) and <i>Hemarthria altissima</i> (HA), known for their capacity for rapid soil stabilization, and the tree species <i>Salix matsudana</i> (SM) and <i>Taxodium distichum</i> (TD), which enhance nutrient cycling through litter inputs and root exudates. These species were evaluated across spring (T1), summer (T2), and autumn (T3). Our analysis of 360 soil samples led to the generation of high-quality sequences that provided insights into microbial diversity. Principal component analysis identified organic matter, ammonium nitrogen, and total nitrogen as the main contributors to soil property variance, explaining 53.68% in T1, 51.52% in T2, and 56.37% in T3 of the variance (p < 0.01). Correlation analysis highlighted a positive relationship between soil pH and <i>Nitrospirae</i> (r = 0.603) and <i>Proteobacteria</i> (r = 0.558). Enzyme activity varied by season, with acid phosphatase activity peaking in T3 and invertase activity highest in T1. This study also made functional predictions and identified pathways pertinent to metabolism, genetic information processing, and environmental signal transduction. There were seasonal shifts in metabolic pathways, such as an increase in carbohydrate metabolism in T3 via TD. In addition, there was a rise in amino acid metabolism in T3 via CD. Our assessment of microbial diversity uncovered 68 bacterial phyla, with <i>Proteobacteria</i> and <i>Acidobacteria</i> emerging as the dominant taxa. The results indicate that ARPs positively influence microbial health, nutrient cycling, and overall ecosystem integrity. These findings hold significant implications for riparian ecosystem restoration in regions experiencing environmental changes.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"16 \",\"pages\":\"1550306\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2025.1550306\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1550306","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Bacterial communities and soil functionality in artificially remediated vegetation of the three gorges reservoir zone.
Riparian zones maintain biodiversity, cyclic nutrients, and regulate water quality. However, their stability is increasingly threatened by human activities such as dam construction and climate variability. This study focuses on the riparian zones of the Three Gorges Dam Reservoir (TGDR), a region marked by fluctuating water levels and a subtropical southeast monsoon climate. We investigated the seasonal and vegetation-specific dynamics of soil properties and microbial communities in riparian zones dominated by artificially remediated plants (ARPs) in the TGDR. The selected ARP species included the herbaceous Cynodon dactylon (CD) and Hemarthria altissima (HA), known for their capacity for rapid soil stabilization, and the tree species Salix matsudana (SM) and Taxodium distichum (TD), which enhance nutrient cycling through litter inputs and root exudates. These species were evaluated across spring (T1), summer (T2), and autumn (T3). Our analysis of 360 soil samples led to the generation of high-quality sequences that provided insights into microbial diversity. Principal component analysis identified organic matter, ammonium nitrogen, and total nitrogen as the main contributors to soil property variance, explaining 53.68% in T1, 51.52% in T2, and 56.37% in T3 of the variance (p < 0.01). Correlation analysis highlighted a positive relationship between soil pH and Nitrospirae (r = 0.603) and Proteobacteria (r = 0.558). Enzyme activity varied by season, with acid phosphatase activity peaking in T3 and invertase activity highest in T1. This study also made functional predictions and identified pathways pertinent to metabolism, genetic information processing, and environmental signal transduction. There were seasonal shifts in metabolic pathways, such as an increase in carbohydrate metabolism in T3 via TD. In addition, there was a rise in amino acid metabolism in T3 via CD. Our assessment of microbial diversity uncovered 68 bacterial phyla, with Proteobacteria and Acidobacteria emerging as the dominant taxa. The results indicate that ARPs positively influence microbial health, nutrient cycling, and overall ecosystem integrity. These findings hold significant implications for riparian ecosystem restoration in regions experiencing environmental changes.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.