氧空位驱动纳米泵对碘的空间限制催化,用于耐用的锌-碘水电池

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-05-15 DOI:10.1016/j.matt.2025.102154
Haisheng Huang, Yin Fan, Yonglin Wang, Li Wang, Yalong Jiang, Yu Cheng, Jiazhi Wang, Yunhai Zhu, Yingkui Yang
{"title":"氧空位驱动纳米泵对碘的空间限制催化,用于耐用的锌-碘水电池","authors":"Haisheng Huang, Yin Fan, Yonglin Wang, Li Wang, Yalong Jiang, Yu Cheng, Jiazhi Wang, Yunhai Zhu, Yingkui Yang","doi":"10.1016/j.matt.2025.102154","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries represent a promising solution for long-duration energy storage; however, the challenge of polyiodide shuttling remains a critical limitation. To address this issue, we engineered an oxygen vacancy-driven nanopump for I<sub>2</sub> molecules based on a two-dimensional van der Waals heterostructure, comprising oxygen vacancy-rich Ti-Nb bimetallic oxide nanosheets sandwiched between carbon layers (V<sub>o</sub>-TNO@C). The oxygen vacancies in V<sub>o</sub>-TNO@C strongly interact with I<sub>2</sub>, facilitating effective capture and confinement of I<sub>2</sub> within the interlayer gap. The confined I<sub>2</sub> is catalytically transformed <em>in situ</em> by the oxygen vacancies, altering the reaction pathway from the conventional approach (I<sub>2</sub> → I<sub>3</sub><sup>−</sup> → I<sup>−</sup>) to a more efficient way (I<sub>2</sub> → I<sup>−</sup>). This confined catalysis significantly accelerates conversion kinetics and suppresses polyiodide formation, resulting in shuttle-free Zn-I<sub>2</sub> batteries with an exceptional lifespan exceeding 70,000 cycles.","PeriodicalId":388,"journal":{"name":"Matter","volume":"1 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-confined catalysis of iodine with oxygen vacancy-driven nanopump for durable aqueous zinc-iodine batteries\",\"authors\":\"Haisheng Huang, Yin Fan, Yonglin Wang, Li Wang, Yalong Jiang, Yu Cheng, Jiazhi Wang, Yunhai Zhu, Yingkui Yang\",\"doi\":\"10.1016/j.matt.2025.102154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries represent a promising solution for long-duration energy storage; however, the challenge of polyiodide shuttling remains a critical limitation. To address this issue, we engineered an oxygen vacancy-driven nanopump for I<sub>2</sub> molecules based on a two-dimensional van der Waals heterostructure, comprising oxygen vacancy-rich Ti-Nb bimetallic oxide nanosheets sandwiched between carbon layers (V<sub>o</sub>-TNO@C). The oxygen vacancies in V<sub>o</sub>-TNO@C strongly interact with I<sub>2</sub>, facilitating effective capture and confinement of I<sub>2</sub> within the interlayer gap. The confined I<sub>2</sub> is catalytically transformed <em>in situ</em> by the oxygen vacancies, altering the reaction pathway from the conventional approach (I<sub>2</sub> → I<sub>3</sub><sup>−</sup> → I<sup>−</sup>) to a more efficient way (I<sub>2</sub> → I<sup>−</sup>). This confined catalysis significantly accelerates conversion kinetics and suppresses polyiodide formation, resulting in shuttle-free Zn-I<sub>2</sub> batteries with an exceptional lifespan exceeding 70,000 cycles.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102154\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水锌碘(Zn-I2)电池是一种很有前途的长期储能解决方案;然而,多碘化物穿梭的挑战仍然是一个关键的限制。为了解决这个问题,我们设计了一个基于二维范德华异质结构的氧空位驱动的I2分子纳米泵,由富含氧空位的Ti-Nb双金属氧化物纳米片夹在碳层之间(Vo-TNO@C)。Vo-TNO@C中的氧空位与I2强烈相互作用,促进了I2在层间间隙内的有效捕获和限制。受限制的I2通过氧空位在原位催化转化,使反应途径从传统的途径(I2→I3−→I−)转变为更有效的途径(I2→I−)。这种受限的催化作用显著加速了转化动力学,抑制了多碘化物的形成,从而使无梭锌- i2电池的寿命超过了70,000次循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Space-confined catalysis of iodine with oxygen vacancy-driven nanopump for durable aqueous zinc-iodine batteries

Space-confined catalysis of iodine with oxygen vacancy-driven nanopump for durable aqueous zinc-iodine batteries
Aqueous zinc-iodine (Zn-I2) batteries represent a promising solution for long-duration energy storage; however, the challenge of polyiodide shuttling remains a critical limitation. To address this issue, we engineered an oxygen vacancy-driven nanopump for I2 molecules based on a two-dimensional van der Waals heterostructure, comprising oxygen vacancy-rich Ti-Nb bimetallic oxide nanosheets sandwiched between carbon layers (Vo-TNO@C). The oxygen vacancies in Vo-TNO@C strongly interact with I2, facilitating effective capture and confinement of I2 within the interlayer gap. The confined I2 is catalytically transformed in situ by the oxygen vacancies, altering the reaction pathway from the conventional approach (I2 → I3 → I) to a more efficient way (I2 → I). This confined catalysis significantly accelerates conversion kinetics and suppresses polyiodide formation, resulting in shuttle-free Zn-I2 batteries with an exceptional lifespan exceeding 70,000 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信