高离子电导率的稳水银柱石晶体工程:Li6+ xMxAs1-xS5I (M = Ge, Sn)

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jihun Roh, Joowon Kim, Hyungjin Lee, Namgyu Do, Jeyne Lyoo, Alicia María Manjón-Sanz, Ginga Kitahara, Shuki Torii, Seung-Tae Hong
{"title":"高离子电导率的稳水银柱石晶体工程:Li6+ xMxAs1-xS5I (M = Ge, Sn)","authors":"Jihun Roh, Joowon Kim, Hyungjin Lee, Namgyu Do, Jeyne Lyoo, Alicia María Manjón-Sanz, Ginga Kitahara, Shuki Torii, Seung-Tae Hong","doi":"10.1021/acs.chemmater.5c00125","DOIUrl":null,"url":null,"abstract":"Sulfide solid electrolytes (SSEs) are promising alternatives to liquid electrolytes in lithium-ion batteries due to their high ionic conductivity and reduced flammability. However, their chemical instability under humid conditions poses significant challenges. This study introduces a substitution series, Li<sub>6+<i>x</i></sub>M<sub><i>x</i></sub>As<sub>1–<i>x</i></sub>S<sub>5</sub>I (M = Ge, Sn), adopting an argyrodite-type structure with high ionic conductivity and moisture stability. Among these, Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I achieves ∼3 mS cm<sup>–1</sup> at 303 K, an improvement of 3 orders of magnitude over pristine Li<sub>6</sub>AsS<sub>5</sub>I. Powder X-ray and neutron diffraction patterns reveal additional lithium-ion sites enhancing 3D diffusion pathways, significantly lowering the activation energy. Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I also demonstrates superior moisture stability, releasing minimal toxic H<sub>2</sub>S gas (70 ppm) after exposure to 27% relative humidity at 303 K for 1 h, outperforming Li<sub>6</sub>PS<sub>5</sub>Cl (160 ppm). Additionally, it retains ∼70% of its initial discharge capacity over 40 cycles of galvanostatic testing (In/InLi/Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I/TiS<sub>2</sub>). However, cycling beyond the electrochemical stability window leads to capacity fading. These findings provide insights into the interplay between crystal structure, ionic conductivity, and moisture stability, offering a pathway to high-performance solid electrolytes for next-generation all-solid-state batteries.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"1 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture-Stable Argyrodites with High Ionic Conductivity via Crystal Structure Engineering: Li6+xMxAs1–xS5I (M = Ge, Sn)\",\"authors\":\"Jihun Roh, Joowon Kim, Hyungjin Lee, Namgyu Do, Jeyne Lyoo, Alicia María Manjón-Sanz, Ginga Kitahara, Shuki Torii, Seung-Tae Hong\",\"doi\":\"10.1021/acs.chemmater.5c00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfide solid electrolytes (SSEs) are promising alternatives to liquid electrolytes in lithium-ion batteries due to their high ionic conductivity and reduced flammability. However, their chemical instability under humid conditions poses significant challenges. This study introduces a substitution series, Li<sub>6+<i>x</i></sub>M<sub><i>x</i></sub>As<sub>1–<i>x</i></sub>S<sub>5</sub>I (M = Ge, Sn), adopting an argyrodite-type structure with high ionic conductivity and moisture stability. Among these, Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I achieves ∼3 mS cm<sup>–1</sup> at 303 K, an improvement of 3 orders of magnitude over pristine Li<sub>6</sub>AsS<sub>5</sub>I. Powder X-ray and neutron diffraction patterns reveal additional lithium-ion sites enhancing 3D diffusion pathways, significantly lowering the activation energy. Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I also demonstrates superior moisture stability, releasing minimal toxic H<sub>2</sub>S gas (70 ppm) after exposure to 27% relative humidity at 303 K for 1 h, outperforming Li<sub>6</sub>PS<sub>5</sub>Cl (160 ppm). Additionally, it retains ∼70% of its initial discharge capacity over 40 cycles of galvanostatic testing (In/InLi/Li<sub>6.333</sub>Ge<sub>0.333</sub>As<sub>0.667</sub>S<sub>5</sub>I/TiS<sub>2</sub>). However, cycling beyond the electrochemical stability window leads to capacity fading. These findings provide insights into the interplay between crystal structure, ionic conductivity, and moisture stability, offering a pathway to high-performance solid electrolytes for next-generation all-solid-state batteries.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.5c00125\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00125","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化物固体电解质(sse)因其高离子导电性和低可燃性而成为锂离子电池中液体电解质的有前途的替代品。然而,它们在潮湿条件下的化学不稳定性带来了重大挑战。本研究引入了一个取代系列,Li6+ xMxAs1-xS5I (M = Ge, Sn),采用银柱石型结构,具有较高的离子电导率和水分稳定性。其中,Li6.333Ge0.333As0.667S5I在303 K下达到了~ 3 mS cm-1,比原始Li6AsS5I提高了3个数量级。粉末x射线和中子衍射图显示额外的锂离子位点增强了3D扩散路径,显著降低了活化能。Li6.333Ge0.333As0.667S5I也表现出优异的湿度稳定性,在相对湿度为27%的303 K条件下暴露1小时后,释放出最小的有毒H2S气体(70 ppm),优于Li6PS5Cl (160 ppm)。此外,在40次恒流测试(In/InLi/Li6.333Ge0.333As0.667S5I/TiS2)循环中,它保持了约70%的初始放电容量。然而,超过电化学稳定窗口的循环会导致容量衰减。这些发现为晶体结构、离子电导率和水分稳定性之间的相互作用提供了见解,为下一代全固态电池的高性能固体电解质提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moisture-Stable Argyrodites with High Ionic Conductivity via Crystal Structure Engineering: Li6+xMxAs1–xS5I (M = Ge, Sn)

Moisture-Stable Argyrodites with High Ionic Conductivity via Crystal Structure Engineering: Li6+xMxAs1–xS5I (M = Ge, Sn)
Sulfide solid electrolytes (SSEs) are promising alternatives to liquid electrolytes in lithium-ion batteries due to their high ionic conductivity and reduced flammability. However, their chemical instability under humid conditions poses significant challenges. This study introduces a substitution series, Li6+xMxAs1–xS5I (M = Ge, Sn), adopting an argyrodite-type structure with high ionic conductivity and moisture stability. Among these, Li6.333Ge0.333As0.667S5I achieves ∼3 mS cm–1 at 303 K, an improvement of 3 orders of magnitude over pristine Li6AsS5I. Powder X-ray and neutron diffraction patterns reveal additional lithium-ion sites enhancing 3D diffusion pathways, significantly lowering the activation energy. Li6.333Ge0.333As0.667S5I also demonstrates superior moisture stability, releasing minimal toxic H2S gas (70 ppm) after exposure to 27% relative humidity at 303 K for 1 h, outperforming Li6PS5Cl (160 ppm). Additionally, it retains ∼70% of its initial discharge capacity over 40 cycles of galvanostatic testing (In/InLi/Li6.333Ge0.333As0.667S5I/TiS2). However, cycling beyond the electrochemical stability window leads to capacity fading. These findings provide insights into the interplay between crystal structure, ionic conductivity, and moisture stability, offering a pathway to high-performance solid electrolytes for next-generation all-solid-state batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信