Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang
{"title":"希格斯质量对隐藏扇区超对称性破缺的影响","authors":"Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang","doi":"10.1103/physrevd.111.095019","DOIUrl":null,"url":null,"abstract":"Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A</a:mi></a:math>-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>16</c:mn><c:msup><c:mi>π</c:mi><c:mn>2</c:mn></c:msup><c:mo>∼</c:mo><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>160</c:mn></c:math>. This situation leads to models such as PeV or minisplit supersymmetry with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>scalars</e:mi></e:mrow></e:msub><e:mo>∼</e:mo><e:mn>160</e:mn><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>gaugino</e:mi></e:mrow></e:msub></e:mrow></e:math>. In order to generate a light Higgs mass <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>m</g:mi><g:mi>h</g:mi></g:msub><g:mo>≃</g:mo><g:mn>125</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>scalars</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>gauginos</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:mi>A</i:mi></i:mrow></i:math>-terms and the large <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>A</k:mi></k:math>-terms lift <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>m</m:mi><m:mi>h</m:mi></m:msub><m:mo stretchy=\"false\">→</m:mo><m:mn>125</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>GeV</m:mi></m:math> even for natural values of <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mi>m</p:mi><p:msub><p:mover accent=\"true\"><p:mi>t</p:mi><p:mo stretchy=\"false\">˜</p:mo></p:mover><p:mn>1</p:mn></p:msub></p:msub><p:mo>∼</p:mo><p:mn>1</p:mn><p:mi>–</p:mi><p:mn>3</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>TeV</p:mi></p:math>. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of Higgs mass for hidden sector SUSY breaking\",\"authors\":\"Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang\",\"doi\":\"10.1103/physrevd.111.095019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A</a:mi></a:math>-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>16</c:mn><c:msup><c:mi>π</c:mi><c:mn>2</c:mn></c:msup><c:mo>∼</c:mo><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>160</c:mn></c:math>. This situation leads to models such as PeV or minisplit supersymmetry with <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>scalars</e:mi></e:mrow></e:msub><e:mo>∼</e:mo><e:mn>160</e:mn><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>gaugino</e:mi></e:mrow></e:msub></e:mrow></e:math>. In order to generate a light Higgs mass <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi>m</g:mi><g:mi>h</g:mi></g:msub><g:mo>≃</g:mo><g:mn>125</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>scalars</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>gauginos</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:mi>A</i:mi></i:mrow></i:math>-terms and the large <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>A</k:mi></k:math>-terms lift <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>m</m:mi><m:mi>h</m:mi></m:msub><m:mo stretchy=\\\"false\\\">→</m:mo><m:mn>125</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>GeV</m:mi></m:math> even for natural values of <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:msub><p:mi>m</p:mi><p:msub><p:mover accent=\\\"true\\\"><p:mi>t</p:mi><p:mo stretchy=\\\"false\\\">˜</p:mo></p:mover><p:mn>1</p:mn></p:msub></p:msub><p:mo>∼</p:mo><p:mn>1</p:mn><p:mi>–</p:mi><p:mn>3</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>TeV</p:mi></p:math>. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.095019\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.095019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Implications of Higgs mass for hidden sector SUSY breaking
Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of 1/16π2∼1/160. This situation leads to models such as PeV or minisplit supersymmetry with mscalars∼160mgaugino. In order to generate a light Higgs mass mh≃125GeV, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then mscalars∼mgauginos∼A-terms and the large A-terms lift mh→125GeV even for natural values of mt˜1∼1–3TeV. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.