希格斯质量对隐藏扇区超对称性破缺的影响

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang
{"title":"希格斯质量对隐藏扇区超对称性破缺的影响","authors":"Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang","doi":"10.1103/physrevd.111.095019","DOIUrl":null,"url":null,"abstract":"Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A</a:mi></a:math>-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>16</c:mn><c:msup><c:mi>π</c:mi><c:mn>2</c:mn></c:msup><c:mo>∼</c:mo><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>160</c:mn></c:math>. This situation leads to models such as PeV or minisplit supersymmetry with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>scalars</e:mi></e:mrow></e:msub><e:mo>∼</e:mo><e:mn>160</e:mn><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>gaugino</e:mi></e:mrow></e:msub></e:mrow></e:math>. In order to generate a light Higgs mass <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>m</g:mi><g:mi>h</g:mi></g:msub><g:mo>≃</g:mo><g:mn>125</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>scalars</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>gauginos</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:mi>A</i:mi></i:mrow></i:math>-terms and the large <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>A</k:mi></k:math>-terms lift <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>m</m:mi><m:mi>h</m:mi></m:msub><m:mo stretchy=\"false\">→</m:mo><m:mn>125</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>GeV</m:mi></m:math> even for natural values of <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mi>m</p:mi><p:msub><p:mover accent=\"true\"><p:mi>t</p:mi><p:mo stretchy=\"false\">˜</p:mo></p:mover><p:mn>1</p:mn></p:msub></p:msub><p:mo>∼</p:mo><p:mn>1</p:mn><p:mi>–</p:mi><p:mn>3</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>TeV</p:mi></p:math>. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of Higgs mass for hidden sector SUSY breaking\",\"authors\":\"Howard Baer, Vernon Barger, Jessica Bolich, Kairui Zhang\",\"doi\":\"10.1103/physrevd.111.095019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A</a:mi></a:math>-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>16</c:mn><c:msup><c:mi>π</c:mi><c:mn>2</c:mn></c:msup><c:mo>∼</c:mo><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>160</c:mn></c:math>. This situation leads to models such as PeV or minisplit supersymmetry with <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>scalars</e:mi></e:mrow></e:msub><e:mo>∼</e:mo><e:mn>160</e:mn><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>gaugino</e:mi></e:mrow></e:msub></e:mrow></e:math>. In order to generate a light Higgs mass <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi>m</g:mi><g:mi>h</g:mi></g:msub><g:mo>≃</g:mo><g:mn>125</g:mn><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>scalars</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msub><i:mrow><i:mi>m</i:mi></i:mrow><i:mrow><i:mi>gauginos</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:mi>A</i:mi></i:mrow></i:math>-terms and the large <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>A</k:mi></k:math>-terms lift <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>m</m:mi><m:mi>h</m:mi></m:msub><m:mo stretchy=\\\"false\\\">→</m:mo><m:mn>125</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>GeV</m:mi></m:math> even for natural values of <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:msub><p:mi>m</p:mi><p:msub><p:mover accent=\\\"true\\\"><p:mi>t</p:mi><p:mo stretchy=\\\"false\\\">˜</p:mo></p:mover><p:mn>1</p:mn></p:msub></p:msub><p:mo>∼</p:mo><p:mn>1</p:mn><p:mi>–</p:mi><p:mn>3</p:mn><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>TeV</p:mi></p:math>. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.095019\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.095019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

隐藏扇区超对称破缺(其中带电的隐藏扇区场获得了SUSY破缺真空期望值)曾经在动态SUSY破缺(DSB)中很常见。在这种情况下,标量可以获得较大的质量,但高规子和a项获得环抑制的异常介导的贡献,这可能比1/16π2 ~ 1/160小。这种情况导致了诸如PeV或微裂超对称的模型,其尺度为~ 160maugino。为了产生轻希格斯质量mh≃125 GeV,在10-100 TeV范围内需要标量质量项,这导致了对弱尺度的巨大非自然贡献。或者,在单线态隐藏扇形场的重力中介中,即使自然值为mt ~ 1 ~ 1 - 3 TeV, mscalars ~ mgauginos ~ a项和大a项也能使mh→125 GeV。需要自然性,这似乎是弦景观的概率偏好,那么测量的希格斯质量似乎更倾向于隐藏区域的单线态,这在亚稳态和改进的DSB模型中很常见。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implications of Higgs mass for hidden sector SUSY breaking
Hidden sector supersymmetry (SUSY) breaking where charged hidden sector fields obtain SUSY breaking vacuum expectation values once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of 1/16π21/160. This situation leads to models such as PeV or minisplit supersymmetry with mscalars160mgaugino. In order to generate a light Higgs mass mh125 GeV, the scalar mass terms are required in the 10–100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then mscalarsmgauginosA-terms and the large A-terms lift mh125 GeV even for natural values of mt˜113 TeV. Requiring naturalness, which seems probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信