层次化纳米片组装的SnO2/SnS2空心微球在低温下增强NO2传感性能

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bowen Zhang , Chongyang Wang , Zhiyan Feng , Bo Zhang , Saisai Zhang , Na Luo , Hari Bala , Yan Wang
{"title":"层次化纳米片组装的SnO2/SnS2空心微球在低温下增强NO2传感性能","authors":"Bowen Zhang ,&nbsp;Chongyang Wang ,&nbsp;Zhiyan Feng ,&nbsp;Bo Zhang ,&nbsp;Saisai Zhang ,&nbsp;Na Luo ,&nbsp;Hari Bala ,&nbsp;Yan Wang","doi":"10.1016/j.apsusc.2025.163531","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring of nitrogen dioxide (NO<sub>2</sub>) is critical for environmental protection and human health. In this study, hierarchical SnS<sub>2</sub> hollow microspheres assembled from nanosheets were synthesized via a hydrothermal method, followed by the in-situ oxidation of SnS<sub>2</sub> to form SnO<sub>2</sub>/SnS<sub>2</sub> nanocomposites at calcination temperatures ranging from 300 to 400 °C. The synergistic effect of the unique hollow morphology and the SnO<sub>2</sub>-SnS<sub>2</sub> heterojunction significantly enhanced the NO<sub>2</sub> sensing performance. Gas-sensing tests revealed that the SnO<sub>2</sub>/SnS<sub>2</sub>-320 sensor (calcined at 320 °C) exhibited a better response value of 50 toward 5 ppm NO<sub>2</sub> at an optimal operating temperature of 100 °C, which is approximately 5 times higher than that of pristine SnS<sub>2</sub>. Additionally, the SnO<sub>2</sub>/SnS<sub>2</sub>-320 sensor demonstrated excellent repeatability, long-term stability, and selectivity toward NO<sub>2</sub>. Density functional theory (DFT) calculations further confirmed that the SnO<sub>2</sub>/SnS<sub>2</sub> heterostructure exhibited a higher NO<sub>2</sub> adsorption energy (−0.040 eV) compared to pure SnS<sub>2</sub> (−0.001 eV), indicating stronger chemisorption, which is consistent with the experimental results. This work provides a novel structural design strategy for developing high-performance NO<sub>2</sub> sensors.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"705 ","pages":"Article 163531"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced NO2 sensing performance of hierarchical nanosheets-assembled SnO2/SnS2 hollow microsphere at low temperature\",\"authors\":\"Bowen Zhang ,&nbsp;Chongyang Wang ,&nbsp;Zhiyan Feng ,&nbsp;Bo Zhang ,&nbsp;Saisai Zhang ,&nbsp;Na Luo ,&nbsp;Hari Bala ,&nbsp;Yan Wang\",\"doi\":\"10.1016/j.apsusc.2025.163531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate monitoring of nitrogen dioxide (NO<sub>2</sub>) is critical for environmental protection and human health. In this study, hierarchical SnS<sub>2</sub> hollow microspheres assembled from nanosheets were synthesized via a hydrothermal method, followed by the in-situ oxidation of SnS<sub>2</sub> to form SnO<sub>2</sub>/SnS<sub>2</sub> nanocomposites at calcination temperatures ranging from 300 to 400 °C. The synergistic effect of the unique hollow morphology and the SnO<sub>2</sub>-SnS<sub>2</sub> heterojunction significantly enhanced the NO<sub>2</sub> sensing performance. Gas-sensing tests revealed that the SnO<sub>2</sub>/SnS<sub>2</sub>-320 sensor (calcined at 320 °C) exhibited a better response value of 50 toward 5 ppm NO<sub>2</sub> at an optimal operating temperature of 100 °C, which is approximately 5 times higher than that of pristine SnS<sub>2</sub>. Additionally, the SnO<sub>2</sub>/SnS<sub>2</sub>-320 sensor demonstrated excellent repeatability, long-term stability, and selectivity toward NO<sub>2</sub>. Density functional theory (DFT) calculations further confirmed that the SnO<sub>2</sub>/SnS<sub>2</sub> heterostructure exhibited a higher NO<sub>2</sub> adsorption energy (−0.040 eV) compared to pure SnS<sub>2</sub> (−0.001 eV), indicating stronger chemisorption, which is consistent with the experimental results. This work provides a novel structural design strategy for developing high-performance NO<sub>2</sub> sensors.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"705 \",\"pages\":\"Article 163531\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225012462\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225012462","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化氮(NO2)的准确监测对环境保护和人类健康至关重要。在本研究中,通过水热法制备了由纳米片组装而成的分层SnS2空心微球,然后在300 ~ 400 ℃的煅烧温度下对SnS2进行原位氧化,形成SnO2/SnS2纳米复合材料。独特的空心形貌与SnO2-SnS2异质结的协同效应显著提高了NO2传感性能。气敏测试表明,在320 °C下煅烧的SnO2/SnS2-320传感器在100 °C的最佳工作温度下,对5 ppm NO2的响应值为50,比原始SnS2高约5倍。此外,SnO2/SnS2-320传感器表现出优异的重复性、长期稳定性和对NO2的选择性。密度泛函理论(DFT)计算进一步证实,SnO2/SnS2异质结构的NO2吸附能(- 0.040 eV)高于纯SnS2(- 0.001 eV),表明其化学吸附更强,与实验结果一致。这项工作为开发高性能二氧化氮传感器提供了一种新的结构设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced NO2 sensing performance of hierarchical nanosheets-assembled SnO2/SnS2 hollow microsphere at low temperature

Enhanced NO2 sensing performance of hierarchical nanosheets-assembled SnO2/SnS2 hollow microsphere at low temperature

Enhanced NO2 sensing performance of hierarchical nanosheets-assembled SnO2/SnS2 hollow microsphere at low temperature
Accurate monitoring of nitrogen dioxide (NO2) is critical for environmental protection and human health. In this study, hierarchical SnS2 hollow microspheres assembled from nanosheets were synthesized via a hydrothermal method, followed by the in-situ oxidation of SnS2 to form SnO2/SnS2 nanocomposites at calcination temperatures ranging from 300 to 400 °C. The synergistic effect of the unique hollow morphology and the SnO2-SnS2 heterojunction significantly enhanced the NO2 sensing performance. Gas-sensing tests revealed that the SnO2/SnS2-320 sensor (calcined at 320 °C) exhibited a better response value of 50 toward 5 ppm NO2 at an optimal operating temperature of 100 °C, which is approximately 5 times higher than that of pristine SnS2. Additionally, the SnO2/SnS2-320 sensor demonstrated excellent repeatability, long-term stability, and selectivity toward NO2. Density functional theory (DFT) calculations further confirmed that the SnO2/SnS2 heterostructure exhibited a higher NO2 adsorption energy (−0.040 eV) compared to pure SnS2 (−0.001 eV), indicating stronger chemisorption, which is consistent with the experimental results. This work provides a novel structural design strategy for developing high-performance NO2 sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信