Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola
{"title":"基于crte2的范德华体系的双层正交铁磁性","authors":"Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola","doi":"10.1038/s41467-025-59266-4","DOIUrl":null,"url":null,"abstract":"<p>Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> (<i>δ</i> = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe<sub>2</sub>-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system\",\"authors\":\"Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola\",\"doi\":\"10.1038/s41467-025-59266-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> (<i>δ</i> = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe<sub>2</sub>-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59266-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59266-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system
Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr1+δTe2 represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr1+δTe2 (δ = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe2-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr1+δTe2 compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.