基于crte2的范德华体系的双层正交铁磁性

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola
{"title":"基于crte2的范德华体系的双层正交铁磁性","authors":"Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola","doi":"10.1038/s41467-025-59266-4","DOIUrl":null,"url":null,"abstract":"<p>Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> (<i>δ</i> = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe<sub>2</sub>-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system\",\"authors\":\"Chiara Bigi, Cyriack Jego, Vincent Polewczyk, Alessandro De Vita, Thomas Jaouen, Hulerich C. Tchouekem, François Bertran, Patrick Le Fèvre, Pascal Turban, Jean-François Jacquot, Jill A. Miwa, Oliver J. Clark, Anupam Jana, Sandeep Kumar Chaluvadi, Pasquale Orgiani, Mario Cuoco, Mats Leandersson, Thiagarajan Balasubramanian, Thomas Olsen, Younghun Hwang, Matthieu Jamet, Federico Mazzola\",\"doi\":\"10.1038/s41467-025-59266-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> (<i>δ</i> = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe<sub>2</sub>-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr<sub>1+<i>δ</i></sub>Te<sub>2</sub> compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59266-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59266-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有明显自旋各向异性的系统是推进磁化开关和自旋波产生机制的关键,这是自旋电子技术的基础。像Cr1+δTe2这样的准范德华铁磁体代表了该领域的开创性材料,以其在失意层状几何形状和磁性之间的微妙平衡而闻名。尽管进行了广泛的研究,但它们的磁基态性质和在外场和温度变化下自旋取向的机制仍然存在争议。在这里,我们利用互补技术揭示了Cr1+δ te2 (δ = 0.25−0.50)中先前被忽视的磁相,我们称之为正交铁磁性。这一阶段由平面内和平面外最大倾斜铁磁块的原子尖单层组成,这与交叉磁性所需的多个异质结构元素的堆叠不同。与先前报道的基于crte2的系统中逐渐的自旋重定向相反,我们提出了突然的自旋翻转样转变的证据。这一发现进一步强调了Cr1+δTe2化合物作为自旋电子和轨道电子应用的有希望的候选者,为器件工程开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system

Bilayer orthogonal ferromagnetism in CrTe2-based van der Waals system

Systems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like Cr1+δTe2 represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested. Here, we exploit complementary techniques to reveal a previously overlooked magnetic phase in Cr1+δTe2 (δ = 0.25 − 0.50), which we term orthogonal-ferromagnetism. This phase consists of atomically sharp single layers of in-plane and out-of-plane maximally canted ferromagnetic blocks, which differs from the stacking of multiple heterostructural elements required for crossed magnetism. Contrary to earlier reports of gradual spin reorientation in CrTe2-based systems, we present evidence for abrupt spin-flop-like transitions. This discovery further highlights Cr1+δTe2 compounds as promising candidates for spintronic and orbitronic applications, opening new pathways for device engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信