全球互联的太阳能风能系统解决了未来的电力需求

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hou Jiang, Ling Yao, Jun Qin, Yongqing Bai, Martin Brandt, Xu Lian, Steve J. Davis, Ning Lu, Wenli Zhao, Tang Liu, Chenghu Zhou
{"title":"全球互联的太阳能风能系统解决了未来的电力需求","authors":"Hou Jiang, Ling Yao, Jun Qin, Yongqing Bai, Martin Brandt, Xu Lian, Steve J. Davis, Ning Lu, Wenli Zhao, Tang Liu, Chenghu Zhou","doi":"10.1038/s41467-025-59879-9","DOIUrl":null,"url":null,"abstract":"<p>Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands. We estimate that such a system could generate ~3.1 times the projected 2050 global electricity demand. By optimizing solar-wind deployment, storage capacity, and trans-regional transmission, the solar-wind penetration could be achieved using only 29.4% of the highest potential, with a 15.6% reduction in initial investment compared to a strategy without interconnection. Global interconnection improves energy efficiency, mitigates the variability of renewable energy, promotes energy availability, and eases the economic burden of decarbonization. Importantly, this interconnected system shows remarkable resilience to climate extremes, generation outages, transmission disruptions, and geopolitical conflicts. Our findings underscore the potential of global interconnection in enabling high renewable penetration and guiding sustainable energy transitions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"123 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Globally interconnected solar-wind system addresses future electricity demands\",\"authors\":\"Hou Jiang, Ling Yao, Jun Qin, Yongqing Bai, Martin Brandt, Xu Lian, Steve J. Davis, Ning Lu, Wenli Zhao, Tang Liu, Chenghu Zhou\",\"doi\":\"10.1038/s41467-025-59879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands. We estimate that such a system could generate ~3.1 times the projected 2050 global electricity demand. By optimizing solar-wind deployment, storage capacity, and trans-regional transmission, the solar-wind penetration could be achieved using only 29.4% of the highest potential, with a 15.6% reduction in initial investment compared to a strategy without interconnection. Global interconnection improves energy efficiency, mitigates the variability of renewable energy, promotes energy availability, and eases the economic burden of decarbonization. Importantly, this interconnected system shows remarkable resilience to climate extremes, generation outages, transmission disruptions, and geopolitical conflicts. Our findings underscore the potential of global interconnection in enabling high renewable penetration and guiding sustainable energy transitions.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59879-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59879-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

加速向可再生能源转型是实现净零排放的核心。然而,建立一个以太阳能和风能为主导的全球电力系统面临着巨大的挑战。在这里,我们展示了全球互联的太阳能风系统的潜力,以满足未来的电力需求。我们估计,这样一个系统可以产生约3.1倍的预计2050年全球电力需求。通过优化太阳能风能的部署、存储容量和跨区域传输,太阳能风能的渗透可以仅利用最高潜力的29.4%实现,与没有互联的策略相比,初始投资减少了15.6%。全球互联提高了能源效率,减轻了可再生能源的可变性,促进了能源的可用性,并减轻了脱碳的经济负担。重要的是,这个相互连接的系统对极端气候、停电、输电中断和地缘政治冲突表现出了卓越的适应能力。我们的研究结果强调了全球互联在实现高可再生能源渗透率和指导可持续能源转型方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Globally interconnected solar-wind system addresses future electricity demands

Globally interconnected solar-wind system addresses future electricity demands

Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands. We estimate that such a system could generate ~3.1 times the projected 2050 global electricity demand. By optimizing solar-wind deployment, storage capacity, and trans-regional transmission, the solar-wind penetration could be achieved using only 29.4% of the highest potential, with a 15.6% reduction in initial investment compared to a strategy without interconnection. Global interconnection improves energy efficiency, mitigates the variability of renewable energy, promotes energy availability, and eases the economic burden of decarbonization. Importantly, this interconnected system shows remarkable resilience to climate extremes, generation outages, transmission disruptions, and geopolitical conflicts. Our findings underscore the potential of global interconnection in enabling high renewable penetration and guiding sustainable energy transitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信