John A. Long, Grzegorz Niedźwiedzki, Jillian Garvey, Alice M. Clement, Aaron B. Camens, Craig A. Eury, John Eason, Per E. Ahlberg
{"title":"最早的羊膜动物足迹重新校准了四足动物进化的时间轴","authors":"John A. Long, Grzegorz Niedźwiedzki, Jillian Garvey, Alice M. Clement, Aaron B. Camens, Craig A. Eury, John Eason, Per E. Ahlberg","doi":"10.1038/s41586-025-08884-5","DOIUrl":null,"url":null,"abstract":"The known fossil record of crown-group amniotes begins in the late Carboniferous with the sauropsid trackmaker Notalacerta1,2 and the sauropsid body fossil Hylonomus1–4. The earliest body fossils of crown-group tetrapods are mid-Carboniferous, and the oldest trackways are early Carboniferous5–7. This suggests that the tetrapod crown group originated in the earliest Carboniferous (early Tournaisian), with the amniote crown group appearing in the early part of the late Carboniferous. Here we present new trackway data from Australia that challenge this widely accepted timeline. A track-bearing slab from the Snowy Plains Formation of Victoria, Taungurung Country, securely dated to the early Tournaisian8,9, shows footprints from a crown-group amniote with clawed feet, most probably a primitive sauropsid. This pushes back the likely origin of crown-group amniotes by at least 35–40 million years. We also extend the range of Notalacerta into the early Carboniferous. The Australian tracks indicate that the amniote crown-group node cannot be much younger than the Devonian/Carboniferous boundary, and that the tetrapod crown-group node must be located deep within the Devonian; an estimate based on molecular-tree branch lengths suggests an approximate age of early Frasnian for the latter. The implications for the early evolution of tetrapods are profound; all stem-tetrapod and stem-amniote lineages must have originated during the Devonian. It seems that tetrapod evolution proceeded much faster, and the Devonian tetrapod record is much less complete, than has been thought. Analysis of a fossil trackway from the earliest Carboniferous of Australia shows prints of toes with claws, suggesting that the origin of amniotes was at least 35–40 million years earlier than previously thought.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"641 8065","pages":"1193-1200"},"PeriodicalIF":48.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-08884-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Earliest amniote tracks recalibrate the timeline of tetrapod evolution\",\"authors\":\"John A. Long, Grzegorz Niedźwiedzki, Jillian Garvey, Alice M. Clement, Aaron B. Camens, Craig A. Eury, John Eason, Per E. Ahlberg\",\"doi\":\"10.1038/s41586-025-08884-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The known fossil record of crown-group amniotes begins in the late Carboniferous with the sauropsid trackmaker Notalacerta1,2 and the sauropsid body fossil Hylonomus1–4. The earliest body fossils of crown-group tetrapods are mid-Carboniferous, and the oldest trackways are early Carboniferous5–7. This suggests that the tetrapod crown group originated in the earliest Carboniferous (early Tournaisian), with the amniote crown group appearing in the early part of the late Carboniferous. Here we present new trackway data from Australia that challenge this widely accepted timeline. A track-bearing slab from the Snowy Plains Formation of Victoria, Taungurung Country, securely dated to the early Tournaisian8,9, shows footprints from a crown-group amniote with clawed feet, most probably a primitive sauropsid. This pushes back the likely origin of crown-group amniotes by at least 35–40 million years. We also extend the range of Notalacerta into the early Carboniferous. The Australian tracks indicate that the amniote crown-group node cannot be much younger than the Devonian/Carboniferous boundary, and that the tetrapod crown-group node must be located deep within the Devonian; an estimate based on molecular-tree branch lengths suggests an approximate age of early Frasnian for the latter. The implications for the early evolution of tetrapods are profound; all stem-tetrapod and stem-amniote lineages must have originated during the Devonian. It seems that tetrapod evolution proceeded much faster, and the Devonian tetrapod record is much less complete, than has been thought. Analysis of a fossil trackway from the earliest Carboniferous of Australia shows prints of toes with claws, suggesting that the origin of amniotes was at least 35–40 million years earlier than previously thought.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"641 8065\",\"pages\":\"1193-1200\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-025-08884-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-08884-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08884-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Earliest amniote tracks recalibrate the timeline of tetrapod evolution
The known fossil record of crown-group amniotes begins in the late Carboniferous with the sauropsid trackmaker Notalacerta1,2 and the sauropsid body fossil Hylonomus1–4. The earliest body fossils of crown-group tetrapods are mid-Carboniferous, and the oldest trackways are early Carboniferous5–7. This suggests that the tetrapod crown group originated in the earliest Carboniferous (early Tournaisian), with the amniote crown group appearing in the early part of the late Carboniferous. Here we present new trackway data from Australia that challenge this widely accepted timeline. A track-bearing slab from the Snowy Plains Formation of Victoria, Taungurung Country, securely dated to the early Tournaisian8,9, shows footprints from a crown-group amniote with clawed feet, most probably a primitive sauropsid. This pushes back the likely origin of crown-group amniotes by at least 35–40 million years. We also extend the range of Notalacerta into the early Carboniferous. The Australian tracks indicate that the amniote crown-group node cannot be much younger than the Devonian/Carboniferous boundary, and that the tetrapod crown-group node must be located deep within the Devonian; an estimate based on molecular-tree branch lengths suggests an approximate age of early Frasnian for the latter. The implications for the early evolution of tetrapods are profound; all stem-tetrapod and stem-amniote lineages must have originated during the Devonian. It seems that tetrapod evolution proceeded much faster, and the Devonian tetrapod record is much less complete, than has been thought. Analysis of a fossil trackway from the earliest Carboniferous of Australia shows prints of toes with claws, suggesting that the origin of amniotes was at least 35–40 million years earlier than previously thought.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.