北大西洋和北太平洋盆地未来热带气旋形成日期的变化:一个集合模式研究

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Dazhi Xi, Hiroyuki Murakami, Ning Lin, Michael Oppenheimer
{"title":"北大西洋和北太平洋盆地未来热带气旋形成日期的变化:一个集合模式研究","authors":"Dazhi Xi, Hiroyuki Murakami, Ning Lin, Michael Oppenheimer","doi":"10.1038/s41612-025-01077-x","DOIUrl":null,"url":null,"abstract":"<p>Changes in the tropical cyclone (TC) seasonal cycle can have profound impacts on compound hazards associated with TCs, such as consecutive summer rainfall and TC-heatwave compound events. However, only a few studies have explored future changes in TC seasonality, and they reach discrepant conclusions. In this study, we perform a high-resolution coupled climate simulation to study the future TC seasonal cycle and investigate the mechanisms of possible changes. The model simulation shows that, under the shared socio-economic pathway 5 8.5 scenario, the mean genesis date will shift significantly to later in the season in Northeastern Pacific (ENP) and North Atlantic (NA) but shift to later or earlier depending on the subregions in Northwestern Pacific (WNP). These shifts in TC seasonal cycles are induced by seasonally asymmetric changes in TC-favorable environmental conditions, which arise from seasonally asymmetric changes in large-scale circulation patterns, including the monsoon troughs, jet stream, and tropical zonal circulation.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"29 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifts of future tropical cyclone genesis date in north atlantic and north pacific basins: an ensemble modeling investigation\",\"authors\":\"Dazhi Xi, Hiroyuki Murakami, Ning Lin, Michael Oppenheimer\",\"doi\":\"10.1038/s41612-025-01077-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes in the tropical cyclone (TC) seasonal cycle can have profound impacts on compound hazards associated with TCs, such as consecutive summer rainfall and TC-heatwave compound events. However, only a few studies have explored future changes in TC seasonality, and they reach discrepant conclusions. In this study, we perform a high-resolution coupled climate simulation to study the future TC seasonal cycle and investigate the mechanisms of possible changes. The model simulation shows that, under the shared socio-economic pathway 5 8.5 scenario, the mean genesis date will shift significantly to later in the season in Northeastern Pacific (ENP) and North Atlantic (NA) but shift to later or earlier depending on the subregions in Northwestern Pacific (WNP). These shifts in TC seasonal cycles are induced by seasonally asymmetric changes in TC-favorable environmental conditions, which arise from seasonally asymmetric changes in large-scale circulation patterns, including the monsoon troughs, jet stream, and tropical zonal circulation.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01077-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01077-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋(TC)季节周期的变化可对与TC相关的复合灾害产生深远影响,如连续夏季降雨和TC-热浪复合事件。然而,只有少数研究探讨了TC季节性的未来变化,并且得出了不同的结论。在本研究中,我们通过高分辨率的耦合气候模拟来研究未来的TC季节周期,并探讨可能的变化机制。模式模拟结果表明,在共享社会经济路径58.5情景下,东北太平洋(ENP)和北大西洋(NA)的平均发生日期将显著向季节后期偏移,而西北太平洋(WNP)的平均发生日期将根据次区域的不同而向晚或早偏移。这些温带气旋季节周期的变化是由温带气旋有利环境条件的季节不对称变化引起的,这些环境条件是由季风槽、急流和热带纬向环流等大尺度环流模式的季节不对称变化引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shifts of future tropical cyclone genesis date in north atlantic and north pacific basins: an ensemble modeling investigation

Shifts of future tropical cyclone genesis date in north atlantic and north pacific basins: an ensemble modeling investigation

Changes in the tropical cyclone (TC) seasonal cycle can have profound impacts on compound hazards associated with TCs, such as consecutive summer rainfall and TC-heatwave compound events. However, only a few studies have explored future changes in TC seasonality, and they reach discrepant conclusions. In this study, we perform a high-resolution coupled climate simulation to study the future TC seasonal cycle and investigate the mechanisms of possible changes. The model simulation shows that, under the shared socio-economic pathway 5 8.5 scenario, the mean genesis date will shift significantly to later in the season in Northeastern Pacific (ENP) and North Atlantic (NA) but shift to later or earlier depending on the subregions in Northwestern Pacific (WNP). These shifts in TC seasonal cycles are induced by seasonally asymmetric changes in TC-favorable environmental conditions, which arise from seasonally asymmetric changes in large-scale circulation patterns, including the monsoon troughs, jet stream, and tropical zonal circulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信