PINN ME:用于太阳磁场精确Milne-Eddington反演的物理信息神经网络框架

Robert Jarolim, Momchil E. Molnar, Benoit Tremblay, Rebecca Centeno and Matthias Rempel
{"title":"PINN ME:用于太阳磁场精确Milne-Eddington反演的物理信息神经网络框架","authors":"Robert Jarolim, Momchil E. Molnar, Benoit Tremblay, Rebecca Centeno and Matthias Rempel","doi":"10.3847/2041-8213/add342","DOIUrl":null,"url":null,"abstract":"Spectropolarimetric inversions of solar observations are fundamental for the estimation of the magnetic field in the solar atmosphere. However, instrumental noise, computational requirements, and varying levels of physical realism make it challenging to derive reliable solar magnetic field estimates. In this study, we present a novel approach for spectropolarimetric inversions based on physics-informed neural networks to infer the photospheric magnetic field under the Milne–Eddington approximation (PINN ME). Our model acts as a representation of the parameter space, mapping input coordinates (t, x, y) to the respective spectropolarimetric parameters, which are used to synthesize the corresponding Stokes profiles. By iteratively sampling coordinate points, synthesizing profiles, and minimizing the deviation from the observed stokes profiles, our method can find the set of Milne–Eddington parameters that best fit the observations. In addition, we directly include the point-spread function to account for instrumental effects. We use a predefined parameter space as well as synthetic profiles from a radiative MHD simulation to evaluate the performance of our method and to estimate the impact of instrumental noise. Our results demonstrate that PINN ME achieves an intrinsic spatiotemporal coupling, which can largely mitigate observational noise and provides a memory-efficient inversion even for extended fields of view. Finally, we apply our method to observations and show that our method provides a high spatial coherence and can resolve small-scale features in both strong- and weak-field regions.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINN ME: A Physics-informed Neural Network Framework for Accurate Milne–Eddington Inversions of Solar Magnetic Fields\",\"authors\":\"Robert Jarolim, Momchil E. Molnar, Benoit Tremblay, Rebecca Centeno and Matthias Rempel\",\"doi\":\"10.3847/2041-8213/add342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectropolarimetric inversions of solar observations are fundamental for the estimation of the magnetic field in the solar atmosphere. However, instrumental noise, computational requirements, and varying levels of physical realism make it challenging to derive reliable solar magnetic field estimates. In this study, we present a novel approach for spectropolarimetric inversions based on physics-informed neural networks to infer the photospheric magnetic field under the Milne–Eddington approximation (PINN ME). Our model acts as a representation of the parameter space, mapping input coordinates (t, x, y) to the respective spectropolarimetric parameters, which are used to synthesize the corresponding Stokes profiles. By iteratively sampling coordinate points, synthesizing profiles, and minimizing the deviation from the observed stokes profiles, our method can find the set of Milne–Eddington parameters that best fit the observations. In addition, we directly include the point-spread function to account for instrumental effects. We use a predefined parameter space as well as synthetic profiles from a radiative MHD simulation to evaluate the performance of our method and to estimate the impact of instrumental noise. Our results demonstrate that PINN ME achieves an intrinsic spatiotemporal coupling, which can largely mitigate observational noise and provides a memory-efficient inversion even for extended fields of view. Finally, we apply our method to observations and show that our method provides a high spatial coherence and can resolve small-scale features in both strong- and weak-field regions.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/add342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳观测的偏振光谱反演是估算太阳大气磁场的基础。然而,仪器噪声、计算要求和不同程度的物理真实感使得获得可靠的太阳磁场估计具有挑战性。在这项研究中,我们提出了一种基于物理信息神经网络的光谱偏振反演新方法,以推断Milne-Eddington近似(PINN ME)下的光球磁场。我们的模型作为参数空间的表示,将输入坐标(t, x, y)映射到各自的光谱偏振参数,这些参数用于合成相应的Stokes剖面。该方法通过对坐标点进行迭代采样,综合轮廓,并最小化与观测stokes轮廓的偏差,找到最适合观测值的Milne-Eddington参数集。此外,我们直接包括点扩散函数来解释工具效应。我们使用预定义的参数空间以及辐射MHD模拟的合成剖面来评估我们的方法的性能并估计仪器噪声的影响。我们的研究结果表明,PINN ME实现了一种内在的时空耦合,可以在很大程度上减轻观测噪声,并且即使在扩展视场中也能提供高效的记忆反演。最后,我们将该方法应用于观测,结果表明该方法具有较高的空间相干性,并且可以在强场和弱场区域中解析小尺度特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINN ME: A Physics-informed Neural Network Framework for Accurate Milne–Eddington Inversions of Solar Magnetic Fields
Spectropolarimetric inversions of solar observations are fundamental for the estimation of the magnetic field in the solar atmosphere. However, instrumental noise, computational requirements, and varying levels of physical realism make it challenging to derive reliable solar magnetic field estimates. In this study, we present a novel approach for spectropolarimetric inversions based on physics-informed neural networks to infer the photospheric magnetic field under the Milne–Eddington approximation (PINN ME). Our model acts as a representation of the parameter space, mapping input coordinates (t, x, y) to the respective spectropolarimetric parameters, which are used to synthesize the corresponding Stokes profiles. By iteratively sampling coordinate points, synthesizing profiles, and minimizing the deviation from the observed stokes profiles, our method can find the set of Milne–Eddington parameters that best fit the observations. In addition, we directly include the point-spread function to account for instrumental effects. We use a predefined parameter space as well as synthetic profiles from a radiative MHD simulation to evaluate the performance of our method and to estimate the impact of instrumental noise. Our results demonstrate that PINN ME achieves an intrinsic spatiotemporal coupling, which can largely mitigate observational noise and provides a memory-efficient inversion even for extended fields of view. Finally, we apply our method to observations and show that our method provides a high spatial coherence and can resolve small-scale features in both strong- and weak-field regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信