中子星合并后盘中依赖角度的原位快速风味变换

Kelsey A. Lund, Payel Mukhopadhyay, Jonah M. Miller and G. C. McLaughlin
{"title":"中子星合并后盘中依赖角度的原位快速风味变换","authors":"Kelsey A. Lund, Payel Mukhopadhyay, Jonah M. Miller and G. C. McLaughlin","doi":"10.3847/2041-8213/add0a7","DOIUrl":null,"url":null,"abstract":"The remnant black hole–accretion disk system resulting from binary neutron star mergers has proven to be a promising site for synthesizing the heaviest elements via rapid neutron capture (r-process). A critical factor in determining the full r-process pattern in these environments is the neutron richness of the ejecta, which is strongly influenced by neutrino interactions. One key ingredient shaping these interactions is fast neutrino flavor conversions (FFCs), which arise due to angular crossings in neutrino distributions and occur on nanosecond timescales. We present the first three-dimensional in situ angle-dependent modeling of FFCs in postmerger disks, implemented within general relativistic magnetohydrodynamics with Monte Carlo neutrino transport. Our results reveal that, by suppressing electron neutrinos, FFCs more efficiently cool the disk and weaken the early thermally driven wind. Less releptonization due to electron neutrino absorption makes this cooler wind more neutron rich, producing a more robust r-process at higher latitudes of the outflow. This study underscores the necessity of incorporating FFCs in realistic simulations.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle-dependent in Situ Fast Flavor Transformations in Post-neutron-star-merger Disks\",\"authors\":\"Kelsey A. Lund, Payel Mukhopadhyay, Jonah M. Miller and G. C. McLaughlin\",\"doi\":\"10.3847/2041-8213/add0a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remnant black hole–accretion disk system resulting from binary neutron star mergers has proven to be a promising site for synthesizing the heaviest elements via rapid neutron capture (r-process). A critical factor in determining the full r-process pattern in these environments is the neutron richness of the ejecta, which is strongly influenced by neutrino interactions. One key ingredient shaping these interactions is fast neutrino flavor conversions (FFCs), which arise due to angular crossings in neutrino distributions and occur on nanosecond timescales. We present the first three-dimensional in situ angle-dependent modeling of FFCs in postmerger disks, implemented within general relativistic magnetohydrodynamics with Monte Carlo neutrino transport. Our results reveal that, by suppressing electron neutrinos, FFCs more efficiently cool the disk and weaken the early thermally driven wind. Less releptonization due to electron neutrino absorption makes this cooler wind more neutron rich, producing a more robust r-process at higher latitudes of the outflow. This study underscores the necessity of incorporating FFCs in realistic simulations.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/add0a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add0a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由双中子星合并产生的残余黑洞吸积盘系统已被证明是通过快中子捕获(r过程)合成最重元素的有希望的场所。在这些环境中确定完整r过程模式的一个关键因素是抛射物的中子丰度,这受到中微子相互作用的强烈影响。形成这些相互作用的一个关键因素是快速中微子风味转换(FFCs),它是由于中微子分布中的角交叉而产生的,并且发生在纳秒级时间尺度上。我们提出了合并后盘中FFCs的第一个三维原位角度依赖模型,在蒙特卡洛中微子输运的广义相对论磁流体动力学中实现。我们的研究结果表明,通过抑制电子中微子,FFCs更有效地冷却磁盘并削弱早期热驱动风。由于电子中微子的吸收,更少的重化使得这种较冷的风更富含中子,在流出的高纬度产生更强大的r过程。这项研究强调了将FFCs纳入现实模拟的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angle-dependent in Situ Fast Flavor Transformations in Post-neutron-star-merger Disks
The remnant black hole–accretion disk system resulting from binary neutron star mergers has proven to be a promising site for synthesizing the heaviest elements via rapid neutron capture (r-process). A critical factor in determining the full r-process pattern in these environments is the neutron richness of the ejecta, which is strongly influenced by neutrino interactions. One key ingredient shaping these interactions is fast neutrino flavor conversions (FFCs), which arise due to angular crossings in neutrino distributions and occur on nanosecond timescales. We present the first three-dimensional in situ angle-dependent modeling of FFCs in postmerger disks, implemented within general relativistic magnetohydrodynamics with Monte Carlo neutrino transport. Our results reveal that, by suppressing electron neutrinos, FFCs more efficiently cool the disk and weaken the early thermally driven wind. Less releptonization due to electron neutrino absorption makes this cooler wind more neutron rich, producing a more robust r-process at higher latitudes of the outflow. This study underscores the necessity of incorporating FFCs in realistic simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信