Casey Y Huang, Helen Nguyen, David J Lundy, James J Lai
{"title":"利用渗透驱动过滤从干细胞条件培养基中快速分离细胞外囊泡。","authors":"Casey Y Huang, Helen Nguyen, David J Lundy, James J Lai","doi":"10.1080/14686996.2025.2485668","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) hold significant promise as biomarkers and therapeutics, yet their isolation remains challenging due to their low abundance and complex sample matrices. Here, we introduce EV-Osmoprocessor (EVOs), a novel device that leverages osmosis-driven filtration for rapid and efficient EV isolation. EVOs employs a high osmolarity polymer solution to concentrate EVs while simultaneously removing smaller contaminants. Compared to traditional methods such as ultracentrifugation and precipitation, EVOs offers speed and convenience, achieving a 50-fold volume reduction in under 2 h. Our results show that EVOs retained EVs and removed >99% albumin from the cell conditioned culture medium (CCM). The isolated EVs exhibited a particle size distribution centered around 140 nm, which was very similar to EVs isolated via precipitation or ultracentrifugation. The standalone EVOs process achieved a particle:protein ratio (EV purity) of ~10<sup>7</sup> particles/µg protein. Comprehensive characterization, including cryo-electron microscopy, validation of protein markers and known miRNA cargo confirmed the successful isolation of EVs. Functional assays, based on protection of cardiomyocytes from hypoxia/reoxygenation injury, demonstrated the bioactivity of EVOs-isolated EVs. Furthermore, we show that EVOs can be used to concentrate 30 ml of CCM into a 0.5 ml solution, which was then further processed with size-exclusion chromatography (SEC), improving EV purity to ~10<sup>9</sup> particles/µg protein. This work establishes EVOs as a promising tool for EV research and clinical applications, offering a streamlined approach to EV isolation with enhanced analytical performance.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2485668"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid isolation of extracellular vesicles from stem cell conditioned medium using osmosis-driven filtration.\",\"authors\":\"Casey Y Huang, Helen Nguyen, David J Lundy, James J Lai\",\"doi\":\"10.1080/14686996.2025.2485668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) hold significant promise as biomarkers and therapeutics, yet their isolation remains challenging due to their low abundance and complex sample matrices. Here, we introduce EV-Osmoprocessor (EVOs), a novel device that leverages osmosis-driven filtration for rapid and efficient EV isolation. EVOs employs a high osmolarity polymer solution to concentrate EVs while simultaneously removing smaller contaminants. Compared to traditional methods such as ultracentrifugation and precipitation, EVOs offers speed and convenience, achieving a 50-fold volume reduction in under 2 h. Our results show that EVOs retained EVs and removed >99% albumin from the cell conditioned culture medium (CCM). The isolated EVs exhibited a particle size distribution centered around 140 nm, which was very similar to EVs isolated via precipitation or ultracentrifugation. The standalone EVOs process achieved a particle:protein ratio (EV purity) of ~10<sup>7</sup> particles/µg protein. Comprehensive characterization, including cryo-electron microscopy, validation of protein markers and known miRNA cargo confirmed the successful isolation of EVs. Functional assays, based on protection of cardiomyocytes from hypoxia/reoxygenation injury, demonstrated the bioactivity of EVOs-isolated EVs. Furthermore, we show that EVOs can be used to concentrate 30 ml of CCM into a 0.5 ml solution, which was then further processed with size-exclusion chromatography (SEC), improving EV purity to ~10<sup>9</sup> particles/µg protein. This work establishes EVOs as a promising tool for EV research and clinical applications, offering a streamlined approach to EV isolation with enhanced analytical performance.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2485668\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2025.2485668\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2485668","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid isolation of extracellular vesicles from stem cell conditioned medium using osmosis-driven filtration.
Extracellular vesicles (EVs) hold significant promise as biomarkers and therapeutics, yet their isolation remains challenging due to their low abundance and complex sample matrices. Here, we introduce EV-Osmoprocessor (EVOs), a novel device that leverages osmosis-driven filtration for rapid and efficient EV isolation. EVOs employs a high osmolarity polymer solution to concentrate EVs while simultaneously removing smaller contaminants. Compared to traditional methods such as ultracentrifugation and precipitation, EVOs offers speed and convenience, achieving a 50-fold volume reduction in under 2 h. Our results show that EVOs retained EVs and removed >99% albumin from the cell conditioned culture medium (CCM). The isolated EVs exhibited a particle size distribution centered around 140 nm, which was very similar to EVs isolated via precipitation or ultracentrifugation. The standalone EVOs process achieved a particle:protein ratio (EV purity) of ~107 particles/µg protein. Comprehensive characterization, including cryo-electron microscopy, validation of protein markers and known miRNA cargo confirmed the successful isolation of EVs. Functional assays, based on protection of cardiomyocytes from hypoxia/reoxygenation injury, demonstrated the bioactivity of EVOs-isolated EVs. Furthermore, we show that EVOs can be used to concentrate 30 ml of CCM into a 0.5 ml solution, which was then further processed with size-exclusion chromatography (SEC), improving EV purity to ~109 particles/µg protein. This work establishes EVOs as a promising tool for EV research and clinical applications, offering a streamlined approach to EV isolation with enhanced analytical performance.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.