Irene Del-Campo, Alba Sorroche, Nina Allen, Mattia Ghirardello, Francisco Corzana, M Carmen Galán, Miguel Monge, José M López-de-Luzuriaga
{"title":"亚2纳米硫代酸保护金纳米团簇的有机金属方法,具有增强的催化和治疗性能。","authors":"Irene Del-Campo, Alba Sorroche, Nina Allen, Mattia Ghirardello, Francisco Corzana, M Carmen Galán, Miguel Monge, José M López-de-Luzuriaga","doi":"10.1039/d5na00123d","DOIUrl":null,"url":null,"abstract":"<p><p>Thiolate-protected gold nanoclusters (AuNCs) of sub-2 nm size have been synthesized through a novel bottom-up approach using the organometallic precursor [Au(C<sub>6</sub>F<sub>5</sub>)(tht)] (tht = tetrahydrothiophene) in a one-pot reaction under mild conditions. This protocol is simple, rapid (1 h), versatile (applicable to thiolate ligands of varying molecular sizes), and reproducible, yielding AuNCs with low size dispersion. Furthermore, the resulting nanomaterials exhibited remarkable catalytic activity, effectively reducing the pollutant 4-nitrophenol to 4-aminophenol, as well as promising photothermal and photodynamic properties upon exposure to an 808 nm laser, converting light into thermal energy and generating reactive oxygen species (ROS). Additionally, AuNCs stabilized with a nonapeptide demonstrated efficient catalase-like activity, thereby potentially enhancing the efficacy of photodynamic therapy. The cytotoxic effects against cancer (HeLa) and healthy cells (HDF) were also evaluated, showing greater selectivity for HeLa cells, with higher toxicity and increased ROS generation.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053774/pdf/","citationCount":"0","resultStr":"{\"title\":\"An organometallic approach to sub-2 nm thiolate-protected Au nanoclusters with enhanced catalytic and therapeutic properties.\",\"authors\":\"Irene Del-Campo, Alba Sorroche, Nina Allen, Mattia Ghirardello, Francisco Corzana, M Carmen Galán, Miguel Monge, José M López-de-Luzuriaga\",\"doi\":\"10.1039/d5na00123d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiolate-protected gold nanoclusters (AuNCs) of sub-2 nm size have been synthesized through a novel bottom-up approach using the organometallic precursor [Au(C<sub>6</sub>F<sub>5</sub>)(tht)] (tht = tetrahydrothiophene) in a one-pot reaction under mild conditions. This protocol is simple, rapid (1 h), versatile (applicable to thiolate ligands of varying molecular sizes), and reproducible, yielding AuNCs with low size dispersion. Furthermore, the resulting nanomaterials exhibited remarkable catalytic activity, effectively reducing the pollutant 4-nitrophenol to 4-aminophenol, as well as promising photothermal and photodynamic properties upon exposure to an 808 nm laser, converting light into thermal energy and generating reactive oxygen species (ROS). Additionally, AuNCs stabilized with a nonapeptide demonstrated efficient catalase-like activity, thereby potentially enhancing the efficacy of photodynamic therapy. The cytotoxic effects against cancer (HeLa) and healthy cells (HDF) were also evaluated, showing greater selectivity for HeLa cells, with higher toxicity and increased ROS generation.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00123d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00123d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An organometallic approach to sub-2 nm thiolate-protected Au nanoclusters with enhanced catalytic and therapeutic properties.
Thiolate-protected gold nanoclusters (AuNCs) of sub-2 nm size have been synthesized through a novel bottom-up approach using the organometallic precursor [Au(C6F5)(tht)] (tht = tetrahydrothiophene) in a one-pot reaction under mild conditions. This protocol is simple, rapid (1 h), versatile (applicable to thiolate ligands of varying molecular sizes), and reproducible, yielding AuNCs with low size dispersion. Furthermore, the resulting nanomaterials exhibited remarkable catalytic activity, effectively reducing the pollutant 4-nitrophenol to 4-aminophenol, as well as promising photothermal and photodynamic properties upon exposure to an 808 nm laser, converting light into thermal energy and generating reactive oxygen species (ROS). Additionally, AuNCs stabilized with a nonapeptide demonstrated efficient catalase-like activity, thereby potentially enhancing the efficacy of photodynamic therapy. The cytotoxic effects against cancer (HeLa) and healthy cells (HDF) were also evaluated, showing greater selectivity for HeLa cells, with higher toxicity and increased ROS generation.