人工智能生成的下肢放射测量在植入物队列中是否准确?

IF 1.9 3区 医学 Q2 ORTHOPEDICS
Holden Archer, Shuda Xia, Seth Reine, Louis Camilo Vazquez, Oganes Ashikyan, Parham Pezeshk, Ajay Kohli, Yin Xi, Joel E Wells, Allan Hummer, Matthew Difranco, Avneesh Chhabra
{"title":"人工智能生成的下肢放射测量在植入物队列中是否准确?","authors":"Holden Archer, Shuda Xia, Seth Reine, Louis Camilo Vazquez, Oganes Ashikyan, Parham Pezeshk, Ajay Kohli, Yin Xi, Joel E Wells, Allan Hummer, Matthew Difranco, Avneesh Chhabra","doi":"10.1007/s00256-025-04936-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Leg length discrepancy (LLD) and malalignment of the lower extremity can lead to pain and increased risk of osteoarthritis. Radiographic measurements on anteroposterior (AP) full-length radiographs can be used to assess LLD and lower extremity alignment. The primary aim of this study was to evaluate the accuracy of AI software in performing lower extremity radiographic measurements in patients with implants. The secondary aim was to compare its efficiency to that of radiologists.</p><p><strong>Materials and methods: </strong>This study used the following eight angles and five lengths: hip-knee-angle (HKA), anatomical-tibiofemoral angle (aTFA), anatomical-mechanical-axis angle (AMA), joint-line-convergence angle (JLCA), mechanical-lateral-proximal-femur-angle (mLPFA), mechanical-lateral-distal-femur-angle (mLDFA), mechanical-medial-proximal-tibia-angle (mMPTA), mechanical-lateral-distal-tibia- angle (mLDTA), femur length, tibia length, full leg length, leg-length-discrepancy (LLD), and mechanical-axis-deviation (MAD). Two radiologists and AI software independently performed these measurements on 156 legs. The statistical methods used to assess AI performance were intraclass correlation coefficient (ICC) and Bland-Altman analysis.</p><p><strong>Results: </strong>The AI generated output for 129/156 legs. 11/13 of the variables showed excellent agreement (ICC ≥ 0.75) between AI and the readers. Bland Altman performance targets were met for 5/13 variables. The mean (standard deviation) reading time for the AI and two readers, respectively, was 38 (6) seconds, 181 (41) seconds, and 214 (77) seconds.</p><p><strong>Conclusion: </strong>In a cohort with lower extremity metal implants, AI-based leg length measurements were fast and accurate although most angular measurements were not.</p>","PeriodicalId":21783,"journal":{"name":"Skeletal Radiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are artificial intelligence generated lower extremity radiographic measurements accurate in a cohort with implants?\",\"authors\":\"Holden Archer, Shuda Xia, Seth Reine, Louis Camilo Vazquez, Oganes Ashikyan, Parham Pezeshk, Ajay Kohli, Yin Xi, Joel E Wells, Allan Hummer, Matthew Difranco, Avneesh Chhabra\",\"doi\":\"10.1007/s00256-025-04936-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Leg length discrepancy (LLD) and malalignment of the lower extremity can lead to pain and increased risk of osteoarthritis. Radiographic measurements on anteroposterior (AP) full-length radiographs can be used to assess LLD and lower extremity alignment. The primary aim of this study was to evaluate the accuracy of AI software in performing lower extremity radiographic measurements in patients with implants. The secondary aim was to compare its efficiency to that of radiologists.</p><p><strong>Materials and methods: </strong>This study used the following eight angles and five lengths: hip-knee-angle (HKA), anatomical-tibiofemoral angle (aTFA), anatomical-mechanical-axis angle (AMA), joint-line-convergence angle (JLCA), mechanical-lateral-proximal-femur-angle (mLPFA), mechanical-lateral-distal-femur-angle (mLDFA), mechanical-medial-proximal-tibia-angle (mMPTA), mechanical-lateral-distal-tibia- angle (mLDTA), femur length, tibia length, full leg length, leg-length-discrepancy (LLD), and mechanical-axis-deviation (MAD). Two radiologists and AI software independently performed these measurements on 156 legs. The statistical methods used to assess AI performance were intraclass correlation coefficient (ICC) and Bland-Altman analysis.</p><p><strong>Results: </strong>The AI generated output for 129/156 legs. 11/13 of the variables showed excellent agreement (ICC ≥ 0.75) between AI and the readers. Bland Altman performance targets were met for 5/13 variables. The mean (standard deviation) reading time for the AI and two readers, respectively, was 38 (6) seconds, 181 (41) seconds, and 214 (77) seconds.</p><p><strong>Conclusion: </strong>In a cohort with lower extremity metal implants, AI-based leg length measurements were fast and accurate although most angular measurements were not.</p>\",\"PeriodicalId\":21783,\"journal\":{\"name\":\"Skeletal Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00256-025-04936-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-025-04936-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:腿长差异(LLD)和下肢错位可导致疼痛和骨关节炎的风险增加。正位(AP)全长x线片上的放射测量可用于评估LLD和下肢对齐。本研究的主要目的是评估人工智能软件在植入物患者下肢放射测量中的准确性。第二个目的是将其与放射科医生的效率进行比较。材料和方法:本研究使用了8个角度和5个长度:髋关节-膝关节角(HKA)、解剖-胫股角(aTFA)、解剖-机械-轴线角(AMA)、关节线趋同角(JLCA)、机械-股骨-外侧-股骨-远端角(mLDFA)、机械-胫骨-内侧-近端角(mMPTA)、机械-胫骨-外侧-远端角(mLDTA)、股骨长度、胫骨长度、全腿长度、腿长差异(LLD)和机械-轴线偏差(MAD)。两名放射科医生和人工智能软件独立对156条腿进行了这些测量。评估人工智能性能的统计方法是类内相关系数(ICC)和Bland-Altman分析。结果:AI生成了129/156条腿的输出。11/13的变量在AI和读者之间表现出极好的一致性(ICC≥0.75)。5/13个变量达到Bland Altman绩效目标。人工智能和两个阅读器的平均(标准差)阅读时间分别为38(6)秒、181(41)秒和214(77)秒。结论:在下肢金属植入的队列中,基于人工智能的腿长测量快速准确,尽管大多数角度测量不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are artificial intelligence generated lower extremity radiographic measurements accurate in a cohort with implants?

Objective: Leg length discrepancy (LLD) and malalignment of the lower extremity can lead to pain and increased risk of osteoarthritis. Radiographic measurements on anteroposterior (AP) full-length radiographs can be used to assess LLD and lower extremity alignment. The primary aim of this study was to evaluate the accuracy of AI software in performing lower extremity radiographic measurements in patients with implants. The secondary aim was to compare its efficiency to that of radiologists.

Materials and methods: This study used the following eight angles and five lengths: hip-knee-angle (HKA), anatomical-tibiofemoral angle (aTFA), anatomical-mechanical-axis angle (AMA), joint-line-convergence angle (JLCA), mechanical-lateral-proximal-femur-angle (mLPFA), mechanical-lateral-distal-femur-angle (mLDFA), mechanical-medial-proximal-tibia-angle (mMPTA), mechanical-lateral-distal-tibia- angle (mLDTA), femur length, tibia length, full leg length, leg-length-discrepancy (LLD), and mechanical-axis-deviation (MAD). Two radiologists and AI software independently performed these measurements on 156 legs. The statistical methods used to assess AI performance were intraclass correlation coefficient (ICC) and Bland-Altman analysis.

Results: The AI generated output for 129/156 legs. 11/13 of the variables showed excellent agreement (ICC ≥ 0.75) between AI and the readers. Bland Altman performance targets were met for 5/13 variables. The mean (standard deviation) reading time for the AI and two readers, respectively, was 38 (6) seconds, 181 (41) seconds, and 214 (77) seconds.

Conclusion: In a cohort with lower extremity metal implants, AI-based leg length measurements were fast and accurate although most angular measurements were not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Skeletal Radiology
Skeletal Radiology 医学-核医学
CiteScore
4.40
自引率
9.50%
发文量
253
审稿时长
3-8 weeks
期刊介绍: Skeletal Radiology provides a forum for the dissemination of current knowledge and information dealing with disorders of the musculoskeletal system including the spine. While emphasizing the radiological aspects of the many varied skeletal abnormalities, the journal also adopts an interdisciplinary approach, reflecting the membership of the International Skeletal Society. Thus, the anatomical, pathological, physiological, clinical, metabolic and epidemiological aspects of the many entities affecting the skeleton receive appropriate consideration. This is the Journal of the International Skeletal Society and the Official Journal of the Society of Skeletal Radiology and the Australasian Musculoskelelal Imaging Group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信