生物力学专门化是对表型的不对称约束。

IF 2.2 4区 生物学 Q2 BIOLOGY
Integrative Organismal Biology Pub Date : 2025-04-07 eCollection Date: 2025-01-01 DOI:10.1093/iob/obaf013
M I Schelp, E D Burress
{"title":"生物力学专门化是对表型的不对称约束。","authors":"M I Schelp, E D Burress","doi":"10.1093/iob/obaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"7 1","pages":"obaf013"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012895/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Specialization Acts as an Asymmetrical Constraint on the Phenotype.\",\"authors\":\"M I Schelp, E D Burress\",\"doi\":\"10.1093/iob/obaf013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.</p>\",\"PeriodicalId\":13666,\"journal\":{\"name\":\"Integrative Organismal Biology\",\"volume\":\"7 1\",\"pages\":\"obaf013\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012895/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Organismal Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/iob/obaf013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obaf013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脊椎动物的颌部涉及速度和力传递之间的权衡,这是它们进食性能和潜在进化的基础。我们研究了89种鲈鱼(鲈科)的速度-力权衡及其对解剖结构复杂的鱼颌系统的适应意义。我们测试了关于权衡如何对称或不对称地限制下颌多样性的替代假设。我们发现,这种权衡对颌骨的结构多样性有很强的影响,表明专门化对表型起着约束作用。力改良颌紧凑,口部短,口腔小,而速度改良颌坚固,口部长,口腔大。颅面多样性沿极端的分布是不对称的,因为具有速度修饰颌骨的物种比具有力修饰颌骨的物种在表型上更不相似。表型进化的速度也是不对称的,因为具有速度改良和力改良的颌骨的谱系分别比非特化颌骨进化得更慢和更快。表型多样性和进化速度之间的差异可以用进化时间来解释,因为力改良的颌相对更接近现在。我们扩展了最近的文献,将权衡与不对称的宏观进化模式联系起来,这可能是脊椎动物多样性分布不均匀的一个未被充分认识的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomechanical Specialization Acts as an Asymmetrical Constraint on the Phenotype.

Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信