{"title":"生物力学专门化是对表型的不对称约束。","authors":"M I Schelp, E D Burress","doi":"10.1093/iob/obaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"7 1","pages":"obaf013"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012895/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Specialization Acts as an Asymmetrical Constraint on the Phenotype.\",\"authors\":\"M I Schelp, E D Burress\",\"doi\":\"10.1093/iob/obaf013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.</p>\",\"PeriodicalId\":13666,\"journal\":{\"name\":\"Integrative Organismal Biology\",\"volume\":\"7 1\",\"pages\":\"obaf013\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012895/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Organismal Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/iob/obaf013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obaf013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Biomechanical Specialization Acts as an Asymmetrical Constraint on the Phenotype.
Vertebrate jaws involve trade-offs between the transmission of velocity and force, which underlies their feeding performance and potentially their evolution. We investigate the velocity-force trade-off and its implications for adaptation of the anatomically complex fish jaw system among 89 species of percid fishes (Percidae). We test alternative hypotheses about how the trade-off may symmetrically or asymmetrically constrain jaw diversity. We find that the trade-off has a strong impact on the structural diversity of the jaws, indicating that specialization acts as a constraint on the phenotype. Force-modified jaws are compact with short snouts and a small oral cavity, while velocity-modified jaws are more robust with elongate snouts and a large oral cavity. The distribution of craniofacial diversity along the extremes is asymmetrical, as species with velocity-modified jaws are more phenotypically dissimilar than those with force-modified jaws. The rate of phenotypic evolution is also asymmetrical, as lineages with velocity- and force-modified jaws evolve slower and faster than unspecialized jaws, respectively. This discrepancy between phenotypic diversity and rate of evolution is explained by time to evolve, as force-modified jaws arose comparatively nearer the present. We expand recent literature linking trade-offs to asymmetrical macroevolutionary patterns, which may be an underappreciated cause of the uneven distribution of vertebrate diversity.