Zisheng Ning, Yuhan Li, Lingmei Dai, Dehua Liu, Wei Du
{"title":"推进碳酸三亚甲基的合成:一条高产绿色合成路线。","authors":"Zisheng Ning, Yuhan Li, Lingmei Dai, Dehua Liu, Wei Du","doi":"10.1186/s40643-025-00877-6","DOIUrl":null,"url":null,"abstract":"<p><p>Trimethylene carbonate (TMC) is an innovative modifier for polylactic acid and a promising biodegradable polymer monomer with broad application potential. However, industrial production of TMC faces challenges such as high catalyst costs, safety issues, and environmental impacts. Enzymatic catalysis offers a potential alternative, but its low product yields have hindered progress. In this study, we introduce a novel synthesis route for TMC using bio-based 1,3-propanediol (1,3-PDO) and dimethyl carbonate (DMC) as substrates. This process involves lipase-catalyzed formation of the intermediate 3-hydroxypropyl methyl carbonate (P1), which is then cyclized to produce TMC. Notably, the by-product, C,C'-1,3-propanediyl C,C'-dimethyl ester (P2), reacts with 1,3-PDO to regenerate P1, further enhancing the overall TMC yield. The mechanism exploration reveals that 1,3-PDO acts as both a reactant and an acid catalyst, initiating a nucleophilic substitution reaction on P2 to produce P1. Under optimized conditions, we achieved a total TMC yield of 88%, the highest reported to date.This study provides a novel green synthesis route for TMC that holds great promise for industrial application, given its safer conditions and competitive yields.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"38"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing the synthesis of trimethylene carbonate: a high-yield green synthesis route.\",\"authors\":\"Zisheng Ning, Yuhan Li, Lingmei Dai, Dehua Liu, Wei Du\",\"doi\":\"10.1186/s40643-025-00877-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trimethylene carbonate (TMC) is an innovative modifier for polylactic acid and a promising biodegradable polymer monomer with broad application potential. However, industrial production of TMC faces challenges such as high catalyst costs, safety issues, and environmental impacts. Enzymatic catalysis offers a potential alternative, but its low product yields have hindered progress. In this study, we introduce a novel synthesis route for TMC using bio-based 1,3-propanediol (1,3-PDO) and dimethyl carbonate (DMC) as substrates. This process involves lipase-catalyzed formation of the intermediate 3-hydroxypropyl methyl carbonate (P1), which is then cyclized to produce TMC. Notably, the by-product, C,C'-1,3-propanediyl C,C'-dimethyl ester (P2), reacts with 1,3-PDO to regenerate P1, further enhancing the overall TMC yield. The mechanism exploration reveals that 1,3-PDO acts as both a reactant and an acid catalyst, initiating a nucleophilic substitution reaction on P2 to produce P1. Under optimized conditions, we achieved a total TMC yield of 88%, the highest reported to date.This study provides a novel green synthesis route for TMC that holds great promise for industrial application, given its safer conditions and competitive yields.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"12 1\",\"pages\":\"38\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-025-00877-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00877-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Advancing the synthesis of trimethylene carbonate: a high-yield green synthesis route.
Trimethylene carbonate (TMC) is an innovative modifier for polylactic acid and a promising biodegradable polymer monomer with broad application potential. However, industrial production of TMC faces challenges such as high catalyst costs, safety issues, and environmental impacts. Enzymatic catalysis offers a potential alternative, but its low product yields have hindered progress. In this study, we introduce a novel synthesis route for TMC using bio-based 1,3-propanediol (1,3-PDO) and dimethyl carbonate (DMC) as substrates. This process involves lipase-catalyzed formation of the intermediate 3-hydroxypropyl methyl carbonate (P1), which is then cyclized to produce TMC. Notably, the by-product, C,C'-1,3-propanediyl C,C'-dimethyl ester (P2), reacts with 1,3-PDO to regenerate P1, further enhancing the overall TMC yield. The mechanism exploration reveals that 1,3-PDO acts as both a reactant and an acid catalyst, initiating a nucleophilic substitution reaction on P2 to produce P1. Under optimized conditions, we achieved a total TMC yield of 88%, the highest reported to date.This study provides a novel green synthesis route for TMC that holds great promise for industrial application, given its safer conditions and competitive yields.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology