生物炭、水凝胶和生物肥料对盐渍环境下小麦生长和生理性状的协同效应评价。

IF 2.7 4区 生物学 Q2 PLANT SCIENCES
Dilfuza Jabborova, Zafarjon Jabbarov, Tokhtasin Abdrakhmanov, Orzubek Fayzullaev, Baljeet Singh Saharan, Kahkashan Perveen, Syed Muhammad Zaka, Andrea Mastinu, Riyaz Sayyed
{"title":"生物炭、水凝胶和生物肥料对盐渍环境下小麦生长和生理性状的协同效应评价。","authors":"Dilfuza Jabborova, Zafarjon Jabbarov, Tokhtasin Abdrakhmanov, Orzubek Fayzullaev, Baljeet Singh Saharan, Kahkashan Perveen, Syed Muhammad Zaka, Andrea Mastinu, Riyaz Sayyed","doi":"10.1071/FP24277","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinity affects plant growth and crop yield. This warrants the urgent need for sustainable management. Our research aims to assess the impact of hydrogel, biochar and biofertilizer on wheat physiology, yield, soil nutrients and enzymes. The study was carried out at the dry bed of the Aral Sea. The experimental design included hydrogel, biochar, biofertilizer (Yer malxami includes Azotobacter chroococcum, Pseudomonas putida and Bacillus subtilis ) and control treatments. After 60days of sowing, plant growth metrics, physiological qualities, root morphological features, soil nutrients and enzyme activities were measured. The findings revealed significant improvement in growth of wheat following biofertilizer, hydrogel and biochar treatments. Applying biofertilizer resulted in a notable increase in the total root length by 69.9%, root volume by 123.7% and root diameter by 84.6%, and the highest chlorophyll a (Chl a ) by 13.3%, chlorophyll b by 13.7% (Chl b ) and total chlorophyll content by 13.1% compared to other treatments. Biofertilizer treatment significantly enhanced plant nitrogen (N) content by 16.0%, phosphorus (P) content by 94.7% and potassium (K) content by 51.8%, and increased the activities of soil enzymes such as catalase and invertase. The implementation of these soil amendments can be posited to mitigate the deleterious effects of saline conditions on wheat and can improve wheat growth under salinity stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the synergistic effects of biochar, hydrogel and biofertilizer on growth and physiological traits of wheat in saline environments.\",\"authors\":\"Dilfuza Jabborova, Zafarjon Jabbarov, Tokhtasin Abdrakhmanov, Orzubek Fayzullaev, Baljeet Singh Saharan, Kahkashan Perveen, Syed Muhammad Zaka, Andrea Mastinu, Riyaz Sayyed\",\"doi\":\"10.1071/FP24277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil salinity affects plant growth and crop yield. This warrants the urgent need for sustainable management. Our research aims to assess the impact of hydrogel, biochar and biofertilizer on wheat physiology, yield, soil nutrients and enzymes. The study was carried out at the dry bed of the Aral Sea. The experimental design included hydrogel, biochar, biofertilizer (Yer malxami includes Azotobacter chroococcum, Pseudomonas putida and Bacillus subtilis ) and control treatments. After 60days of sowing, plant growth metrics, physiological qualities, root morphological features, soil nutrients and enzyme activities were measured. The findings revealed significant improvement in growth of wheat following biofertilizer, hydrogel and biochar treatments. Applying biofertilizer resulted in a notable increase in the total root length by 69.9%, root volume by 123.7% and root diameter by 84.6%, and the highest chlorophyll a (Chl a ) by 13.3%, chlorophyll b by 13.7% (Chl b ) and total chlorophyll content by 13.1% compared to other treatments. Biofertilizer treatment significantly enhanced plant nitrogen (N) content by 16.0%, phosphorus (P) content by 94.7% and potassium (K) content by 51.8%, and increased the activities of soil enzymes such as catalase and invertase. The implementation of these soil amendments can be posited to mitigate the deleterious effects of saline conditions on wheat and can improve wheat growth under salinity stress.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24277\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24277","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐分影响植物生长和作物产量。这证明迫切需要可持续的管理。本研究旨在评估水凝胶、生物炭和生物肥料对小麦生理、产量、土壤养分和酶的影响。这项研究是在咸海干涸的河床上进行的。试验设计包括水凝胶、生物炭、生物肥料(malxami包括固氮菌、恶臭假单胞菌和枯草芽孢杆菌)和对照处理。播种60d后,测定植株生长指标、生理品质、根系形态特征、土壤养分和酶活性。结果表明,施用生物肥料、水凝胶和生物炭对小麦生长有显著改善。施用生物肥可显著增加根长69.9%、根体积123.7%、根直径84.6%,叶绿素a (Chl a)、叶绿素b (Chl b)和总叶绿素含量分别比其他处理增加13.3%、13.7%和13.1%。生物肥处理显著提高了植株氮(N)含量16.0%、磷(P)含量94.7%、钾(K)含量51.8%,提高了过氧化氢酶和转化酶等土壤酶活性。这些土壤改良剂的施用可以减轻盐渍条件对小麦的有害影响,并可以改善盐胁迫下小麦的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the synergistic effects of biochar, hydrogel and biofertilizer on growth and physiological traits of wheat in saline environments.

Soil salinity affects plant growth and crop yield. This warrants the urgent need for sustainable management. Our research aims to assess the impact of hydrogel, biochar and biofertilizer on wheat physiology, yield, soil nutrients and enzymes. The study was carried out at the dry bed of the Aral Sea. The experimental design included hydrogel, biochar, biofertilizer (Yer malxami includes Azotobacter chroococcum, Pseudomonas putida and Bacillus subtilis ) and control treatments. After 60days of sowing, plant growth metrics, physiological qualities, root morphological features, soil nutrients and enzyme activities were measured. The findings revealed significant improvement in growth of wheat following biofertilizer, hydrogel and biochar treatments. Applying biofertilizer resulted in a notable increase in the total root length by 69.9%, root volume by 123.7% and root diameter by 84.6%, and the highest chlorophyll a (Chl a ) by 13.3%, chlorophyll b by 13.7% (Chl b ) and total chlorophyll content by 13.1% compared to other treatments. Biofertilizer treatment significantly enhanced plant nitrogen (N) content by 16.0%, phosphorus (P) content by 94.7% and potassium (K) content by 51.8%, and increased the activities of soil enzymes such as catalase and invertase. The implementation of these soil amendments can be posited to mitigate the deleterious effects of saline conditions on wheat and can improve wheat growth under salinity stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信