Meiru Zhu, Zeyu An, Boyang Song, Carol Baskin, Mingyue Li, Zhuolin Liu, Yu Wang, Yuhua Li, Hailong Shen, Peng Zhang
{"title":"水曲柳种子的体温诱导机制与胚乳的变化有关。","authors":"Meiru Zhu, Zeyu An, Boyang Song, Carol Baskin, Mingyue Li, Zhuolin Liu, Yu Wang, Yuhua Li, Hailong Shen, Peng Zhang","doi":"10.1007/s00425-025-04712-2","DOIUrl":null,"url":null,"abstract":"<p><p>Does thermodormancy impact the embryo and/or the endosperm? The seed-embryo replacement method was used to determine the mechanism of thermodormancy induction in the endospermic seeds of Fraxinus mandshurica. Germination of \"new seeds\" after seed embryo replacement (thermodormant embryo + non-dormant endosperm, non-dormant embryo + thermodormant endosperm, thermodormant embryo + thermodormant endosperm, non-dormant embryo + non-dormant endosperm) was compared. Germination of isolated embryos in exogenous hormones and endosperm extracts, endosperm cell wall-degrading enzyme activity, and endosperm hormone content were measured. Endosperm transcriptome of non-dormant and thermodormant seeds was determined using RNA-Seq sequencing technology. The embryos of non-dormant seeds and thermodormant seeds were not dormant, and germination of embryos isolated from them was the same. The twofold dilution of endosperm extract significantly inhibited embryos growth of non-dormant and thermodormant seeds, while the germination percentage (GP) was lower than 15%. Regardless of whether the embryo of the \"new seed\" came from a thermodormant or non-dormant seed, the GP of the \"new seed\" was higher if the endosperm came from a non-dormant seed (80 and 84%, respectively). However, if the endosperm came from a thermodormant seed, GP of the new seed with an embryo from a thermodormant or non-dormant seed decreased significantly (64 and 66%, respectively). The activity of cell wall-degrading enzymes in radicle-end endosperm of thermodormant seeds was lower than that in non-radicle-end endosperm, and the activity of enzyme in radicle-end endosperm of seeds decreased significantly after cultivating for more than 5 days at high temperature (HT). ABA content in endosperm increased significantly, GA<sub>3</sub> content in endosperm decreased significantly, and GA<sub>3</sub>/ABA ratio of endosperm was significantly decreased by nearly 1/3. HT triggers stress response by activating ABA biosynthesis and the corresponding signaling pathways. Therefore, the embryo of thermodormant F. mandshurica seeds was non-dormant, and thermodormancy induction was related to changes in the endosperm. During incubation at high temperature, the softening ability of endosperm (especially in radicle-end endosperm) was significantly weakened, while ABA accumulation and GA<sub>3</sub> decomposition in endosperm significantly enhanced the inhibition of germination by endosperm. High temperature strongly activated ABA-related signaling pathways and stress response mechanisms in endosperm. MAIN CONCLUSIONS: Induction of F. mandshurica seeds into thermodormancy is related to changes in the endosperm. The embryo of the thermodormant seeds F. mandshurica is non-dormant.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 6","pages":"130"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of thermodormancy induction in Fraxinus mandshurica seeds is related to changes in the endosperm.\",\"authors\":\"Meiru Zhu, Zeyu An, Boyang Song, Carol Baskin, Mingyue Li, Zhuolin Liu, Yu Wang, Yuhua Li, Hailong Shen, Peng Zhang\",\"doi\":\"10.1007/s00425-025-04712-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Does thermodormancy impact the embryo and/or the endosperm? The seed-embryo replacement method was used to determine the mechanism of thermodormancy induction in the endospermic seeds of Fraxinus mandshurica. Germination of \\\"new seeds\\\" after seed embryo replacement (thermodormant embryo + non-dormant endosperm, non-dormant embryo + thermodormant endosperm, thermodormant embryo + thermodormant endosperm, non-dormant embryo + non-dormant endosperm) was compared. Germination of isolated embryos in exogenous hormones and endosperm extracts, endosperm cell wall-degrading enzyme activity, and endosperm hormone content were measured. Endosperm transcriptome of non-dormant and thermodormant seeds was determined using RNA-Seq sequencing technology. The embryos of non-dormant seeds and thermodormant seeds were not dormant, and germination of embryos isolated from them was the same. The twofold dilution of endosperm extract significantly inhibited embryos growth of non-dormant and thermodormant seeds, while the germination percentage (GP) was lower than 15%. Regardless of whether the embryo of the \\\"new seed\\\" came from a thermodormant or non-dormant seed, the GP of the \\\"new seed\\\" was higher if the endosperm came from a non-dormant seed (80 and 84%, respectively). However, if the endosperm came from a thermodormant seed, GP of the new seed with an embryo from a thermodormant or non-dormant seed decreased significantly (64 and 66%, respectively). The activity of cell wall-degrading enzymes in radicle-end endosperm of thermodormant seeds was lower than that in non-radicle-end endosperm, and the activity of enzyme in radicle-end endosperm of seeds decreased significantly after cultivating for more than 5 days at high temperature (HT). ABA content in endosperm increased significantly, GA<sub>3</sub> content in endosperm decreased significantly, and GA<sub>3</sub>/ABA ratio of endosperm was significantly decreased by nearly 1/3. HT triggers stress response by activating ABA biosynthesis and the corresponding signaling pathways. Therefore, the embryo of thermodormant F. mandshurica seeds was non-dormant, and thermodormancy induction was related to changes in the endosperm. During incubation at high temperature, the softening ability of endosperm (especially in radicle-end endosperm) was significantly weakened, while ABA accumulation and GA<sub>3</sub> decomposition in endosperm significantly enhanced the inhibition of germination by endosperm. High temperature strongly activated ABA-related signaling pathways and stress response mechanisms in endosperm. MAIN CONCLUSIONS: Induction of F. mandshurica seeds into thermodormancy is related to changes in the endosperm. The embryo of the thermodormant seeds F. mandshurica is non-dormant.</p>\",\"PeriodicalId\":20177,\"journal\":{\"name\":\"Planta\",\"volume\":\"261 6\",\"pages\":\"130\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00425-025-04712-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04712-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Mechanism of thermodormancy induction in Fraxinus mandshurica seeds is related to changes in the endosperm.
Does thermodormancy impact the embryo and/or the endosperm? The seed-embryo replacement method was used to determine the mechanism of thermodormancy induction in the endospermic seeds of Fraxinus mandshurica. Germination of "new seeds" after seed embryo replacement (thermodormant embryo + non-dormant endosperm, non-dormant embryo + thermodormant endosperm, thermodormant embryo + thermodormant endosperm, non-dormant embryo + non-dormant endosperm) was compared. Germination of isolated embryos in exogenous hormones and endosperm extracts, endosperm cell wall-degrading enzyme activity, and endosperm hormone content were measured. Endosperm transcriptome of non-dormant and thermodormant seeds was determined using RNA-Seq sequencing technology. The embryos of non-dormant seeds and thermodormant seeds were not dormant, and germination of embryos isolated from them was the same. The twofold dilution of endosperm extract significantly inhibited embryos growth of non-dormant and thermodormant seeds, while the germination percentage (GP) was lower than 15%. Regardless of whether the embryo of the "new seed" came from a thermodormant or non-dormant seed, the GP of the "new seed" was higher if the endosperm came from a non-dormant seed (80 and 84%, respectively). However, if the endosperm came from a thermodormant seed, GP of the new seed with an embryo from a thermodormant or non-dormant seed decreased significantly (64 and 66%, respectively). The activity of cell wall-degrading enzymes in radicle-end endosperm of thermodormant seeds was lower than that in non-radicle-end endosperm, and the activity of enzyme in radicle-end endosperm of seeds decreased significantly after cultivating for more than 5 days at high temperature (HT). ABA content in endosperm increased significantly, GA3 content in endosperm decreased significantly, and GA3/ABA ratio of endosperm was significantly decreased by nearly 1/3. HT triggers stress response by activating ABA biosynthesis and the corresponding signaling pathways. Therefore, the embryo of thermodormant F. mandshurica seeds was non-dormant, and thermodormancy induction was related to changes in the endosperm. During incubation at high temperature, the softening ability of endosperm (especially in radicle-end endosperm) was significantly weakened, while ABA accumulation and GA3 decomposition in endosperm significantly enhanced the inhibition of germination by endosperm. High temperature strongly activated ABA-related signaling pathways and stress response mechanisms in endosperm. MAIN CONCLUSIONS: Induction of F. mandshurica seeds into thermodormancy is related to changes in the endosperm. The embryo of the thermodormant seeds F. mandshurica is non-dormant.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.