过渡金属催化咔唑的直接功能化。

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vikash Kumar, Sivakumar Sudharsan, Lusina Mantry, Rajaram Maayuri, Malati Das, Parthasarathy Gandeepan
{"title":"过渡金属催化咔唑的直接功能化。","authors":"Vikash Kumar, Sivakumar Sudharsan, Lusina Mantry, Rajaram Maayuri, Malati Das, Parthasarathy Gandeepan","doi":"10.1002/tcr.202500042","DOIUrl":null,"url":null,"abstract":"<p><p>Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500042"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metal-Catalyzed Direct Functionalization of Carbazoles.\",\"authors\":\"Vikash Kumar, Sivakumar Sudharsan, Lusina Mantry, Rajaram Maayuri, Malati Das, Parthasarathy Gandeepan\",\"doi\":\"10.1002/tcr.202500042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202500042\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202500042\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500042","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

咔唑是一类重要的含氮杂环化合物,存在于多种天然产物、生物活性分子和功能材料中。它们的广泛应用推动了对其合成和功能化的广泛研究。在各种方法中,过渡金属催化的C-H活化已成为直接功能化的有力工具,具有区域选择性,效率和可持续性。本文综述了过渡金属催化碳-氢功能化咔唑的研究进展。采用钯、钌、铑、镍、钴、铜和铁的各种催化体系使咔唑中的烷基化、烯基化、酰化、芳基化、烷基化和杂原子掺入成为可能。这些方法使后期多样化,并为获得结构复杂的咔唑衍生物开辟了途径。这篇综述旨在为研究人员通过C-H活化来探索咔唑功能化提供全面的指导,重点介绍了该领域的关键机制见解、范围和新兴趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transition Metal-Catalyzed Direct Functionalization of Carbazoles.

Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信