{"title":"过渡金属催化咔唑的直接功能化。","authors":"Vikash Kumar, Sivakumar Sudharsan, Lusina Mantry, Rajaram Maayuri, Malati Das, Parthasarathy Gandeepan","doi":"10.1002/tcr.202500042","DOIUrl":null,"url":null,"abstract":"<p><p>Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500042"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metal-Catalyzed Direct Functionalization of Carbazoles.\",\"authors\":\"Vikash Kumar, Sivakumar Sudharsan, Lusina Mantry, Rajaram Maayuri, Malati Das, Parthasarathy Gandeepan\",\"doi\":\"10.1002/tcr.202500042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202500042\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202500042\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500042","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transition Metal-Catalyzed Direct Functionalization of Carbazoles.
Carbazoles are an important class of nitrogen-containing heterocycles found in diverse natural products, bioactive molecules, and functional materials. Their broader applications have driven extensive research into their synthesis and functionalization. Among various approaches, transition metal-catalyzed C-H activation has emerged as a powerful tool for direct functionalization, offering regioselectivity, efficiency, and sustainability. This review comprehensively summarizes advancements in transition metal-catalyzed C-H functionalization of carbazoles. Various catalytic systems employing palladium, ruthenium, rhodium, nickel, cobalt, copper, and iron have enabled alkylation, alkenylation, acylation, arylation, alkynylation, and heteroatom incorporation in carbazoles. These methodologies enabled late-stage diversification and have opened avenues for accessing structurally complex carbazole derivatives with tailored properties. The review aims to provide a comprehensive guide for researchers exploring carbazole functionalization via C-H activation, highlighting key mechanistic insights, scope, and emerging trends in this field.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.