Jinjing Zhang, Tao Wang, Yanling Wang, Ying Li, Lu Wang, Jiepu Wang, Yuxuan Miao, Feng Xu, Yushi Yao
{"title":"细菌性肺炎诱导驻留的肺泡巨噬细胞衰老,这些细胞被单核细胞打败。","authors":"Jinjing Zhang, Tao Wang, Yanling Wang, Ying Li, Lu Wang, Jiepu Wang, Yuxuan Miao, Feng Xu, Yushi Yao","doi":"10.1016/j.celrep.2025.115571","DOIUrl":null,"url":null,"abstract":"<p><p>Alveolar macrophages (AMs) are lung-resident macrophages critical to lung homeostasis and immunity. Replacement of embryonic-derived tissue-resident AMs (TRAMs) by circulating monocyte-derived AMs (MoAMs) reshapes the functionality of AMs and host susceptibility to respiratory diseases. However, mechanisms underlying such an AM turnover remain unclear. Using a mouse model of Streptococcus pneumoniae (S.P.) infection, we show here that respiratory S.P. infection induces the recruitment and differentiation of MoAMs, which dominate the post-infectious AM population and are functionally hyperresponsive. This turnover of AMs is not due to S.P.-induced irreversible loss of TRAMs. Instead, TRAMs experience a quick recovery in cell number shortly after the resolution of S.P. infection. While S.P.-experienced TRAMs keep the potential of long-term self-maintenance in a non-competitive environment, they demonstrate cellular senescence and a reduced rate of homeostatic proliferation and are, therefore, outcompeted by MoAMs. These data provide new insights into the mechanisms and functional significance of AM turnover during pulmonary bacterial infection.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115571"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial pneumonia induces senescence in resident alveolar macrophages that are outcompeted by monocytes.\",\"authors\":\"Jinjing Zhang, Tao Wang, Yanling Wang, Ying Li, Lu Wang, Jiepu Wang, Yuxuan Miao, Feng Xu, Yushi Yao\",\"doi\":\"10.1016/j.celrep.2025.115571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alveolar macrophages (AMs) are lung-resident macrophages critical to lung homeostasis and immunity. Replacement of embryonic-derived tissue-resident AMs (TRAMs) by circulating monocyte-derived AMs (MoAMs) reshapes the functionality of AMs and host susceptibility to respiratory diseases. However, mechanisms underlying such an AM turnover remain unclear. Using a mouse model of Streptococcus pneumoniae (S.P.) infection, we show here that respiratory S.P. infection induces the recruitment and differentiation of MoAMs, which dominate the post-infectious AM population and are functionally hyperresponsive. This turnover of AMs is not due to S.P.-induced irreversible loss of TRAMs. Instead, TRAMs experience a quick recovery in cell number shortly after the resolution of S.P. infection. While S.P.-experienced TRAMs keep the potential of long-term self-maintenance in a non-competitive environment, they demonstrate cellular senescence and a reduced rate of homeostatic proliferation and are, therefore, outcompeted by MoAMs. These data provide new insights into the mechanisms and functional significance of AM turnover during pulmonary bacterial infection.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"44 5\",\"pages\":\"115571\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2025.115571\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115571","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Bacterial pneumonia induces senescence in resident alveolar macrophages that are outcompeted by monocytes.
Alveolar macrophages (AMs) are lung-resident macrophages critical to lung homeostasis and immunity. Replacement of embryonic-derived tissue-resident AMs (TRAMs) by circulating monocyte-derived AMs (MoAMs) reshapes the functionality of AMs and host susceptibility to respiratory diseases. However, mechanisms underlying such an AM turnover remain unclear. Using a mouse model of Streptococcus pneumoniae (S.P.) infection, we show here that respiratory S.P. infection induces the recruitment and differentiation of MoAMs, which dominate the post-infectious AM population and are functionally hyperresponsive. This turnover of AMs is not due to S.P.-induced irreversible loss of TRAMs. Instead, TRAMs experience a quick recovery in cell number shortly after the resolution of S.P. infection. While S.P.-experienced TRAMs keep the potential of long-term self-maintenance in a non-competitive environment, they demonstrate cellular senescence and a reduced rate of homeostatic proliferation and are, therefore, outcompeted by MoAMs. These data provide new insights into the mechanisms and functional significance of AM turnover during pulmonary bacterial infection.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.