Yingyue Zhang, Haijing Zhao, Liuyang Tian, Zengao Yang, Li Zheng, Honghong Zhang, Yue Zhu, Yuhan Ma, Yong Xu, Yuqi Liu
{"title":"SPARC:人脐静脉内皮细胞凋亡的关键介质及其在高血压机制中的作用。","authors":"Yingyue Zhang, Haijing Zhao, Liuyang Tian, Zengao Yang, Li Zheng, Honghong Zhang, Yue Zhu, Yuhan Ma, Yong Xu, Yuqi Liu","doi":"10.1007/s11626-025-01026-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertensionis a leading global health issue associated with high mortality and severe complications. Understanding its molecular mechanisms is essential for identifying novel therapeutic targets. Secreted protein acidic and rich in cysteine (SPARC) is associated with cell migration, disease pathophysiology, and inflammation; however, its role in hypertension remains under investigation. This study investigates the role of SPARC in hypertension, focusing on its impact on endothelial dysfunction.Using the GSE75815 dataset from the GEO database, we identified 71 differentially expressed genes (DEGs) associated with hypertension. Pathway analyses and protein-protein interaction networks constructed through the STRING database highlighted six hub genes, with further evaluation based on Comparative Toxicogenomics Database (CTD) scores. Immune cell profiling via ImmuCellAI revealed an increase in naive B cells, positively correlating with hub gene expression.Experimental validation in human umbilical vein endothelial cells (HUVECs) treated with angiotensin II demonstrated that SPARC downregulation reduced apoptosis and BAX expression. Silencing SPARC enhanced endothelial cell proliferation, migration, and nitric oxide production, counteracting angiotensin II-induced damage. Notably, angiotensin II upregulated SPARC secretion, suggesting its critical role in mediating endothelial dysfunction.These findings establish SPARC as a key contributor to the molecular pathways underlying hypertension. Targeting SPARC may represent a novel therapeutic strategy to mitigate endothelial dysfunction and improve outcomes for hypertensive patients.Our findings highlight SPARC as a key player in the molecular pathways of hypertension. Modulating SPARC expression may offer a promising therapeutic strategy to counteract endothelial dysfunction and improve outcomes in hypertensive patients.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPARC: a key mediator of apoptosis in human umbilical vein endothelial cells and its role in hypertension mechanism.\",\"authors\":\"Yingyue Zhang, Haijing Zhao, Liuyang Tian, Zengao Yang, Li Zheng, Honghong Zhang, Yue Zhu, Yuhan Ma, Yong Xu, Yuqi Liu\",\"doi\":\"10.1007/s11626-025-01026-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertensionis a leading global health issue associated with high mortality and severe complications. Understanding its molecular mechanisms is essential for identifying novel therapeutic targets. Secreted protein acidic and rich in cysteine (SPARC) is associated with cell migration, disease pathophysiology, and inflammation; however, its role in hypertension remains under investigation. This study investigates the role of SPARC in hypertension, focusing on its impact on endothelial dysfunction.Using the GSE75815 dataset from the GEO database, we identified 71 differentially expressed genes (DEGs) associated with hypertension. Pathway analyses and protein-protein interaction networks constructed through the STRING database highlighted six hub genes, with further evaluation based on Comparative Toxicogenomics Database (CTD) scores. Immune cell profiling via ImmuCellAI revealed an increase in naive B cells, positively correlating with hub gene expression.Experimental validation in human umbilical vein endothelial cells (HUVECs) treated with angiotensin II demonstrated that SPARC downregulation reduced apoptosis and BAX expression. Silencing SPARC enhanced endothelial cell proliferation, migration, and nitric oxide production, counteracting angiotensin II-induced damage. Notably, angiotensin II upregulated SPARC secretion, suggesting its critical role in mediating endothelial dysfunction.These findings establish SPARC as a key contributor to the molecular pathways underlying hypertension. Targeting SPARC may represent a novel therapeutic strategy to mitigate endothelial dysfunction and improve outcomes for hypertensive patients.Our findings highlight SPARC as a key player in the molecular pathways of hypertension. Modulating SPARC expression may offer a promising therapeutic strategy to counteract endothelial dysfunction and improve outcomes in hypertensive patients.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01026-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01026-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SPARC: a key mediator of apoptosis in human umbilical vein endothelial cells and its role in hypertension mechanism.
Hypertensionis a leading global health issue associated with high mortality and severe complications. Understanding its molecular mechanisms is essential for identifying novel therapeutic targets. Secreted protein acidic and rich in cysteine (SPARC) is associated with cell migration, disease pathophysiology, and inflammation; however, its role in hypertension remains under investigation. This study investigates the role of SPARC in hypertension, focusing on its impact on endothelial dysfunction.Using the GSE75815 dataset from the GEO database, we identified 71 differentially expressed genes (DEGs) associated with hypertension. Pathway analyses and protein-protein interaction networks constructed through the STRING database highlighted six hub genes, with further evaluation based on Comparative Toxicogenomics Database (CTD) scores. Immune cell profiling via ImmuCellAI revealed an increase in naive B cells, positively correlating with hub gene expression.Experimental validation in human umbilical vein endothelial cells (HUVECs) treated with angiotensin II demonstrated that SPARC downregulation reduced apoptosis and BAX expression. Silencing SPARC enhanced endothelial cell proliferation, migration, and nitric oxide production, counteracting angiotensin II-induced damage. Notably, angiotensin II upregulated SPARC secretion, suggesting its critical role in mediating endothelial dysfunction.These findings establish SPARC as a key contributor to the molecular pathways underlying hypertension. Targeting SPARC may represent a novel therapeutic strategy to mitigate endothelial dysfunction and improve outcomes for hypertensive patients.Our findings highlight SPARC as a key player in the molecular pathways of hypertension. Modulating SPARC expression may offer a promising therapeutic strategy to counteract endothelial dysfunction and improve outcomes in hypertensive patients.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.