Amjad Z Alrosan, Ghaith B Heilat, Khaled Alrosan, Ahmad Shannag, Ehab M Alshalout
{"title":"NEDD4信号:乳腺癌和卵巢癌诊断和治疗的新前沿","authors":"Amjad Z Alrosan, Ghaith B Heilat, Khaled Alrosan, Ahmad Shannag, Ehab M Alshalout","doi":"10.1007/s12032-025-02751-z","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, breast cancer (BC) and ovarian cancer (OC) are the most prevalent forms of cancer among women worldwide. Even though BC has a favorable outlook when detected early and managed appropriately compared to OC, the spread of BC and OC to other parts of the body, known as metastasis, is a significant cause of death. A robust association exists between genetic and protein alterations and post-translational modifications (PTMs), significantly impacting tumor formation, advancement, and prognosis. Ubiquitination, a crucial PTM, regulates almost all aspects of cellular function, and E3-ligase-mediated ubiquitination is a pivotal process that controls the speed of the protein ubiquitination cascade. NEDD4-1, a neural developmentally downregulated protein 4-1, is a crucial E3 ligase that plays a significant role in regulating several proteins that have important functions in the development and progression of BC and OC, thus controlling BC and OC cells' movement, infiltration, and multiplication. This review discusses the latest developments in comprehending NEDD4-1 substrates and their involvement in signal transduction pathways in BC and OC. NEDD4-1 likely serves as a novel diagnostic indicator and a target for therapy in the battle against both cancers.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 6","pages":"200"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEDD4 signaling: a new frontier in the diagnosis and treatment of breast and ovarian cancers.\",\"authors\":\"Amjad Z Alrosan, Ghaith B Heilat, Khaled Alrosan, Ahmad Shannag, Ehab M Alshalout\",\"doi\":\"10.1007/s12032-025-02751-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, breast cancer (BC) and ovarian cancer (OC) are the most prevalent forms of cancer among women worldwide. Even though BC has a favorable outlook when detected early and managed appropriately compared to OC, the spread of BC and OC to other parts of the body, known as metastasis, is a significant cause of death. A robust association exists between genetic and protein alterations and post-translational modifications (PTMs), significantly impacting tumor formation, advancement, and prognosis. Ubiquitination, a crucial PTM, regulates almost all aspects of cellular function, and E3-ligase-mediated ubiquitination is a pivotal process that controls the speed of the protein ubiquitination cascade. NEDD4-1, a neural developmentally downregulated protein 4-1, is a crucial E3 ligase that plays a significant role in regulating several proteins that have important functions in the development and progression of BC and OC, thus controlling BC and OC cells' movement, infiltration, and multiplication. This review discusses the latest developments in comprehending NEDD4-1 substrates and their involvement in signal transduction pathways in BC and OC. NEDD4-1 likely serves as a novel diagnostic indicator and a target for therapy in the battle against both cancers.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":\"42 6\",\"pages\":\"200\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-025-02751-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02751-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
NEDD4 signaling: a new frontier in the diagnosis and treatment of breast and ovarian cancers.
Currently, breast cancer (BC) and ovarian cancer (OC) are the most prevalent forms of cancer among women worldwide. Even though BC has a favorable outlook when detected early and managed appropriately compared to OC, the spread of BC and OC to other parts of the body, known as metastasis, is a significant cause of death. A robust association exists between genetic and protein alterations and post-translational modifications (PTMs), significantly impacting tumor formation, advancement, and prognosis. Ubiquitination, a crucial PTM, regulates almost all aspects of cellular function, and E3-ligase-mediated ubiquitination is a pivotal process that controls the speed of the protein ubiquitination cascade. NEDD4-1, a neural developmentally downregulated protein 4-1, is a crucial E3 ligase that plays a significant role in regulating several proteins that have important functions in the development and progression of BC and OC, thus controlling BC and OC cells' movement, infiltration, and multiplication. This review discusses the latest developments in comprehending NEDD4-1 substrates and their involvement in signal transduction pathways in BC and OC. NEDD4-1 likely serves as a novel diagnostic indicator and a target for therapy in the battle against both cancers.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.