{"title":"放射组学在胶质瘤中的发展前景:对诊断、预后和研究趋势的见解。","authors":"Mehek Dedhia, Isabelle M Germano","doi":"10.3390/cancers17091582","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas are the most prevalent and aggressive form of primary brain tumors. The clinical challenge in managing patients with this disease revolves around the difficulty of diagnosis, both at onset and during treatment, and the scarcity of prognostic outcome indicators. Radiomics involves the extraction of quantitative features from medical images with the help of artificial intelligence, positioning it as a promising tool to be integrated into the care of glioma patients. Using data from 52 studies and 12,482 patients over two years, this review explores how radiomics can enhance the initial diagnosis of gliomas, especially helping to differentiate treatment stages that may be difficult for the human eye to do otherwise. Radiomics has also been able to identify patient-specific tumor molecular signatures for targeted treatments without the need for invasive surgical biopsy. Such an approach could lead to earlier interventions and more precise individualized therapies that are tailored to each patient. Additionally, it could be integrated into clinical practice to improve longitudinal diagnosis during treatment and predict tumor recurrence. Finally, radiomics has the potential to predict clinical outcomes, helping both patients and providers set realistic expectations. While this field is continuously evolving, future research should conduct such studies in larger, multi-institutional cohorts to enhance generalizability and applicability in clinical practice and focus on combining radiomics with other modalities to improve its predictive accuracy and clinical utility.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071695/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Evolving Landscape of Radiomics in Gliomas: Insights into Diagnosis, Prognosis, and Research Trends.\",\"authors\":\"Mehek Dedhia, Isabelle M Germano\",\"doi\":\"10.3390/cancers17091582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gliomas are the most prevalent and aggressive form of primary brain tumors. The clinical challenge in managing patients with this disease revolves around the difficulty of diagnosis, both at onset and during treatment, and the scarcity of prognostic outcome indicators. Radiomics involves the extraction of quantitative features from medical images with the help of artificial intelligence, positioning it as a promising tool to be integrated into the care of glioma patients. Using data from 52 studies and 12,482 patients over two years, this review explores how radiomics can enhance the initial diagnosis of gliomas, especially helping to differentiate treatment stages that may be difficult for the human eye to do otherwise. Radiomics has also been able to identify patient-specific tumor molecular signatures for targeted treatments without the need for invasive surgical biopsy. Such an approach could lead to earlier interventions and more precise individualized therapies that are tailored to each patient. Additionally, it could be integrated into clinical practice to improve longitudinal diagnosis during treatment and predict tumor recurrence. Finally, radiomics has the potential to predict clinical outcomes, helping both patients and providers set realistic expectations. While this field is continuously evolving, future research should conduct such studies in larger, multi-institutional cohorts to enhance generalizability and applicability in clinical practice and focus on combining radiomics with other modalities to improve its predictive accuracy and clinical utility.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers17091582\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17091582","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The Evolving Landscape of Radiomics in Gliomas: Insights into Diagnosis, Prognosis, and Research Trends.
Gliomas are the most prevalent and aggressive form of primary brain tumors. The clinical challenge in managing patients with this disease revolves around the difficulty of diagnosis, both at onset and during treatment, and the scarcity of prognostic outcome indicators. Radiomics involves the extraction of quantitative features from medical images with the help of artificial intelligence, positioning it as a promising tool to be integrated into the care of glioma patients. Using data from 52 studies and 12,482 patients over two years, this review explores how radiomics can enhance the initial diagnosis of gliomas, especially helping to differentiate treatment stages that may be difficult for the human eye to do otherwise. Radiomics has also been able to identify patient-specific tumor molecular signatures for targeted treatments without the need for invasive surgical biopsy. Such an approach could lead to earlier interventions and more precise individualized therapies that are tailored to each patient. Additionally, it could be integrated into clinical practice to improve longitudinal diagnosis during treatment and predict tumor recurrence. Finally, radiomics has the potential to predict clinical outcomes, helping both patients and providers set realistic expectations. While this field is continuously evolving, future research should conduct such studies in larger, multi-institutional cohorts to enhance generalizability and applicability in clinical practice and focus on combining radiomics with other modalities to improve its predictive accuracy and clinical utility.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.