多种机制:在癌细胞上发现的调节异常黏液型o糖基化合成的因素。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Joanna Cull, Ryan C Pink, Priya Samuel, Susan A Brooks
{"title":"多种机制:在癌细胞上发现的调节异常黏液型o糖基化合成的因素。","authors":"Joanna Cull, Ryan C Pink, Priya Samuel, Susan A Brooks","doi":"10.1093/glycob/cwaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myriad mechanisms: factors regulating the synthesis of aberrant mucin-type O-glycosylation found on cancer cells.\",\"authors\":\"Joanna Cull, Ryan C Pink, Priya Samuel, Susan A Brooks\",\"doi\":\"10.1093/glycob/cwaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf023\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

粘蛋白型o键糖基化是由单个n-乙酰- d -半乳糖胺(GalNAc)转移到丝氨酸(Ser)或苏氨酸(Thr)残基的羟基上引发的。这一过程由20种同工酶,即UDP-N-α- d -半乳糖胺:多肽n -乙酰半乳糖胺转移酶(ppGalNAc-Ts, GalNAc- ts或GALNTs)催化产生Thomsen nouvelle (Tn)抗原(GalNAc-α-Ser/Thr)。在健康的成年细胞中,通过特定糖基转移酶的作用,Tn抗原被进一步加工,形成八种核心结构之一,这些核心结构本身可以延伸形成更复杂的聚糖,或者形成唾液酰Tn或唾液酰核1(唾液酰T),其中唾液酰化终止链延伸。这些o -聚糖通过黏液型o -连接糖基化产生,是许多分泌蛋白和膜结合蛋白的特征,在广泛的生物学功能中起着重要作用。这一过程的失调通常会导致包括Tn抗原在内的隐型截断的o -聚糖暴露,这在广泛的病理中是重要的,并且与癌症转移有关。粘蛋白o型糖基化在健康和疾病中的调节是高度复杂的,尚未完全了解。这是由多种机制决定的,从转录控制、突变、翻译后控制、转移酶的稳定性、它们在分泌途径中的重新定位,以及高尔基体基本结构和环境的变化。本文综述了癌症中截断黏液型o链聚糖合成的这些潜在调控步骤的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myriad mechanisms: factors regulating the synthesis of aberrant mucin-type O-glycosylation found on cancer cells.

Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信