{"title":"用含盐工业废水处理生产超纯水。","authors":"Adriana Hernández Miraflores, Karina Hernández Gómez, Claudia Muro, María Claudia Delgado Hernández, Vianney Díaz Blancas, Jesús Álvarez Sánchez, German Eduardo Devora Isordia","doi":"10.3390/membranes15040116","DOIUrl":null,"url":null,"abstract":"<p><p>A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a system of reverse osmosis (RO) and a post-treatment process consisting of ion exchange resins (IEXRs). The RO was accompanied by the addition of a hexametaphosphate dose (2, 6, and 10 mg/L) as an antiscalant to avoid the RO membrane scaling by minerals. In turn, IEXRs were used for water deionization to produce ultrapure water with a reduced concentration of monovalent ions. The antiscalant dose was 6 mg/L, producing clean water from RO permeates with an efficiency of 65-70%. The brine from RO was projected for its reuse in food industry processes. The clean water quality from RO showed 20% total dissolved solids (TDS) removal (equivalent to salts). The antiscalant inhibited the formation of calcium salt incrustation > 200 mg/L, showing low fouling. In turn, anionic resins removed 99.8% of chloride ions, whereas the monovalent salts were removed by a mix of cationic-anionic resin, producing ultrapure water with electrical conductivity < 3.3 µS/cm. The cost of ultrapure water production was 2.62 USD/m<sup>3</sup>.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrapure Water Production by a Saline Industrial Effluent Treatment.\",\"authors\":\"Adriana Hernández Miraflores, Karina Hernández Gómez, Claudia Muro, María Claudia Delgado Hernández, Vianney Díaz Blancas, Jesús Álvarez Sánchez, German Eduardo Devora Isordia\",\"doi\":\"10.3390/membranes15040116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a system of reverse osmosis (RO) and a post-treatment process consisting of ion exchange resins (IEXRs). The RO was accompanied by the addition of a hexametaphosphate dose (2, 6, and 10 mg/L) as an antiscalant to avoid the RO membrane scaling by minerals. In turn, IEXRs were used for water deionization to produce ultrapure water with a reduced concentration of monovalent ions. The antiscalant dose was 6 mg/L, producing clean water from RO permeates with an efficiency of 65-70%. The brine from RO was projected for its reuse in food industry processes. The clean water quality from RO showed 20% total dissolved solids (TDS) removal (equivalent to salts). The antiscalant inhibited the formation of calcium salt incrustation > 200 mg/L, showing low fouling. In turn, anionic resins removed 99.8% of chloride ions, whereas the monovalent salts were removed by a mix of cationic-anionic resin, producing ultrapure water with electrical conductivity < 3.3 µS/cm. The cost of ultrapure water production was 2.62 USD/m<sup>3</sup>.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15040116\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15040116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrapure Water Production by a Saline Industrial Effluent Treatment.
A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a system of reverse osmosis (RO) and a post-treatment process consisting of ion exchange resins (IEXRs). The RO was accompanied by the addition of a hexametaphosphate dose (2, 6, and 10 mg/L) as an antiscalant to avoid the RO membrane scaling by minerals. In turn, IEXRs were used for water deionization to produce ultrapure water with a reduced concentration of monovalent ions. The antiscalant dose was 6 mg/L, producing clean water from RO permeates with an efficiency of 65-70%. The brine from RO was projected for its reuse in food industry processes. The clean water quality from RO showed 20% total dissolved solids (TDS) removal (equivalent to salts). The antiscalant inhibited the formation of calcium salt incrustation > 200 mg/L, showing low fouling. In turn, anionic resins removed 99.8% of chloride ions, whereas the monovalent salts were removed by a mix of cationic-anionic resin, producing ultrapure water with electrical conductivity < 3.3 µS/cm. The cost of ultrapure water production was 2.62 USD/m3.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.