Antonio Adarve-Castro, Virginia Soria-Utrilla, José Miguel Castro-García, María Dolores Domínguez-Pinos, Francisco Sendra-Portero, Miguel J Ruiz-Gómez, José Algarra-García
{"title":"原发性甲状旁腺功能亢进骨质疏松症的先进放射学预测:基于机器学习的CT图像分析。","authors":"Antonio Adarve-Castro, Virginia Soria-Utrilla, José Miguel Castro-García, María Dolores Domínguez-Pinos, Francisco Sendra-Portero, Miguel J Ruiz-Gómez, José Algarra-García","doi":"10.1007/s11547-025-02004-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to assess the proficiency of supervised machine learning techniques in discriminating between normal and abnormal bone mineral density (BMD) by leveraging clinical features and texture analysis of spinal bone tissue in patients diagnosed with primary hyperparathyroidism (PHP). From a total of 219 patients diagnosed with PHP, the 58 who had undergone both DXA and abdominal CT scan were included in this study. BMD was assessed by quantifying the Hounsfield units (HU) and performing texture analysis on every CT scan. The first lumbar vertebral body texture features were extracted by using LifeX 7.3.0 software. Initial classification into normal or abnormal BMD was performed with different machine learning techniques by training a model with the variables obtained from the texture analysis. Differentiating osteopenia from osteoporosis was evaluated by creating two models, one including the variables obtained from the texture analysis and HU and another one which only included the HU. Their performance was evaluated in the validation and test groups by calculating the accuracy, precision, recall, F1 score, and AUC. Bayes demonstrated higher performance for discerning individuals with normal and abnormal BMD, with an AUC of 0.916. The results from the second analysis showed a better performance for the model including the variables obtained from the texture analysis compared to the model that was solely trained with the HU (AUC in the training group of 0.77 vs. 0.65 in the test groups, respectively). In conclusion, analysis of BMD obtained from abdominal CT scans including texture analysis provide a better classification of normal density, osteopenia and osteoporosis in patients with PHP.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced radiomic prediction of osteoporosis in primary hyperparathyroidism: a machine learning-based analysis of CT images.\",\"authors\":\"Antonio Adarve-Castro, Virginia Soria-Utrilla, José Miguel Castro-García, María Dolores Domínguez-Pinos, Francisco Sendra-Portero, Miguel J Ruiz-Gómez, José Algarra-García\",\"doi\":\"10.1007/s11547-025-02004-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to assess the proficiency of supervised machine learning techniques in discriminating between normal and abnormal bone mineral density (BMD) by leveraging clinical features and texture analysis of spinal bone tissue in patients diagnosed with primary hyperparathyroidism (PHP). From a total of 219 patients diagnosed with PHP, the 58 who had undergone both DXA and abdominal CT scan were included in this study. BMD was assessed by quantifying the Hounsfield units (HU) and performing texture analysis on every CT scan. The first lumbar vertebral body texture features were extracted by using LifeX 7.3.0 software. Initial classification into normal or abnormal BMD was performed with different machine learning techniques by training a model with the variables obtained from the texture analysis. Differentiating osteopenia from osteoporosis was evaluated by creating two models, one including the variables obtained from the texture analysis and HU and another one which only included the HU. Their performance was evaluated in the validation and test groups by calculating the accuracy, precision, recall, F1 score, and AUC. Bayes demonstrated higher performance for discerning individuals with normal and abnormal BMD, with an AUC of 0.916. The results from the second analysis showed a better performance for the model including the variables obtained from the texture analysis compared to the model that was solely trained with the HU (AUC in the training group of 0.77 vs. 0.65 in the test groups, respectively). In conclusion, analysis of BMD obtained from abdominal CT scans including texture analysis provide a better classification of normal density, osteopenia and osteoporosis in patients with PHP.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-02004-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02004-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Advanced radiomic prediction of osteoporosis in primary hyperparathyroidism: a machine learning-based analysis of CT images.
This study aims to assess the proficiency of supervised machine learning techniques in discriminating between normal and abnormal bone mineral density (BMD) by leveraging clinical features and texture analysis of spinal bone tissue in patients diagnosed with primary hyperparathyroidism (PHP). From a total of 219 patients diagnosed with PHP, the 58 who had undergone both DXA and abdominal CT scan were included in this study. BMD was assessed by quantifying the Hounsfield units (HU) and performing texture analysis on every CT scan. The first lumbar vertebral body texture features were extracted by using LifeX 7.3.0 software. Initial classification into normal or abnormal BMD was performed with different machine learning techniques by training a model with the variables obtained from the texture analysis. Differentiating osteopenia from osteoporosis was evaluated by creating two models, one including the variables obtained from the texture analysis and HU and another one which only included the HU. Their performance was evaluated in the validation and test groups by calculating the accuracy, precision, recall, F1 score, and AUC. Bayes demonstrated higher performance for discerning individuals with normal and abnormal BMD, with an AUC of 0.916. The results from the second analysis showed a better performance for the model including the variables obtained from the texture analysis compared to the model that was solely trained with the HU (AUC in the training group of 0.77 vs. 0.65 in the test groups, respectively). In conclusion, analysis of BMD obtained from abdominal CT scans including texture analysis provide a better classification of normal density, osteopenia and osteoporosis in patients with PHP.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.