{"title":"基于贝塞尔光片照明的斑马鱼荧光成像平台。","authors":"Chuhui Wang, Dongmei Su, Ziheng Zhang, Jiaju Chen, Yang Liu, Cuiyi Peng, Yachen Fan, Chenggang Yan, Sanyang Han, Minjiang Chen, Xingru Huang, Jiansong Ji, Zhenglin Chen, Dong Liu, Dongmei Yu, Peiwu Qin","doi":"10.1364/BOE.542599","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a three-dimensional (3D) zebrafish fluorescence imaging platform based on Bessel light sheet fluorescence microscopy (LSFM). During the 3D imaging process, the excitation light sheet remains static and the axial scanning is realized by moving the sample with one motorized positioning stage. To solve the defocusing problem caused by the optical path length change in 3D imaging, an electrically tunable lens (ETL) is adopted in the detection optical path. An auto-refocusing method that considers the sample structural anisotropy and has no limitation on the mathematical form of signals added to the ETL is designed. The results show that ETL can provide a satisfactory refocusing effect using detection objectives with a low numerical aperture (NA). In addition, the effects of the ETL on the system magnification and resolution are explored. A magnification calibration method is devised to refine the precision of the volume synthesis. The system design also facilitates the recording of ambient noise, which can help improve image quality with simple background image subtraction. This hardware-based background elimination method is compared with several state-of-the-art fluorescence image denoising algorithms, and the comparison results verified the high performance of this method. The imaging results of live zebrafish lymphatic and vascular structures, as well as blood flow, prove the reliability of this platform without necessitating further image deconvolution.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1678-1691"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zebrafish fluorescence imaging platform based on Bessel light sheet illumination.\",\"authors\":\"Chuhui Wang, Dongmei Su, Ziheng Zhang, Jiaju Chen, Yang Liu, Cuiyi Peng, Yachen Fan, Chenggang Yan, Sanyang Han, Minjiang Chen, Xingru Huang, Jiansong Ji, Zhenglin Chen, Dong Liu, Dongmei Yu, Peiwu Qin\",\"doi\":\"10.1364/BOE.542599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed a three-dimensional (3D) zebrafish fluorescence imaging platform based on Bessel light sheet fluorescence microscopy (LSFM). During the 3D imaging process, the excitation light sheet remains static and the axial scanning is realized by moving the sample with one motorized positioning stage. To solve the defocusing problem caused by the optical path length change in 3D imaging, an electrically tunable lens (ETL) is adopted in the detection optical path. An auto-refocusing method that considers the sample structural anisotropy and has no limitation on the mathematical form of signals added to the ETL is designed. The results show that ETL can provide a satisfactory refocusing effect using detection objectives with a low numerical aperture (NA). In addition, the effects of the ETL on the system magnification and resolution are explored. A magnification calibration method is devised to refine the precision of the volume synthesis. The system design also facilitates the recording of ambient noise, which can help improve image quality with simple background image subtraction. This hardware-based background elimination method is compared with several state-of-the-art fluorescence image denoising algorithms, and the comparison results verified the high performance of this method. The imaging results of live zebrafish lymphatic and vascular structures, as well as blood flow, prove the reliability of this platform without necessitating further image deconvolution.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 4\",\"pages\":\"1678-1691\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.542599\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Zebrafish fluorescence imaging platform based on Bessel light sheet illumination.
We developed a three-dimensional (3D) zebrafish fluorescence imaging platform based on Bessel light sheet fluorescence microscopy (LSFM). During the 3D imaging process, the excitation light sheet remains static and the axial scanning is realized by moving the sample with one motorized positioning stage. To solve the defocusing problem caused by the optical path length change in 3D imaging, an electrically tunable lens (ETL) is adopted in the detection optical path. An auto-refocusing method that considers the sample structural anisotropy and has no limitation on the mathematical form of signals added to the ETL is designed. The results show that ETL can provide a satisfactory refocusing effect using detection objectives with a low numerical aperture (NA). In addition, the effects of the ETL on the system magnification and resolution are explored. A magnification calibration method is devised to refine the precision of the volume synthesis. The system design also facilitates the recording of ambient noise, which can help improve image quality with simple background image subtraction. This hardware-based background elimination method is compared with several state-of-the-art fluorescence image denoising algorithms, and the comparison results verified the high performance of this method. The imaging results of live zebrafish lymphatic and vascular structures, as well as blood flow, prove the reliability of this platform without necessitating further image deconvolution.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.