含萘普生和地塞米松的优化水凝胶包被微针的口腔应用。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Joo-Young Kim, Yun-Sik Um, Young-Guk Na, Da-Eun Kim, Yo Han Song, Suyeon Hwang, Minki Jin, Jooyoung Kim, Seung-Ki Baek, Jong-Suep Baek, Hong-Ki Lee, Cheong-Weon Cho
{"title":"含萘普生和地塞米松的优化水凝胶包被微针的口腔应用。","authors":"Joo-Young Kim, Yun-Sik Um, Young-Guk Na, Da-Eun Kim, Yo Han Song, Suyeon Hwang, Minki Jin, Jooyoung Kim, Seung-Ki Baek, Jong-Suep Baek, Hong-Ki Lee, Cheong-Weon Cho","doi":"10.1007/s13346-025-01870-4","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation and impaired bone regeneration are major challenges in oral and maxillofacial surgery, necessitating the development of effective drug delivery systems. This study aimed to develop a hydrogel-based microneedle (MN) system for the controlled release of anti-inflammatory and osteogenic drugs. A hydrogel loaded with naproxen sodium (NAS) and dexamethasone sodium phosphate (DEX) using poloxamer 407 (NDgel) was prepared using a low-temperature method and optimized via the Box-Behnken design. The optimized hydrogel exhibited a gelation temperature of 30.87 ± 0.64℃, pH 7.92 ± 0.12, and viscosity 87.47 ± 5.66 cP. Physicochemical evaluations, including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), confirmed that NAS and DEX were incorporated in an amorphous form. The hydrogel was coated onto microneedles (NDgMN) via a dip-coating method and dried. In vitro drug release studies in artificial saliva showed NAS and DEX release rates of 21.7 ± 5.8% and 19.0 ± 1.8%, respectively, after 5 min. The NDgMN exhibited significantly enhanced permeability, with 48.5% and 48.7% permeability for NAS and DEX after 48 h, compared to 31.0% and 28.8% for the hydrogel alone. The IC<sub>50</sub> values of the drug solution and drug-containing gel were 123 µg/mL and 203.2 µg/mL, respectively. NDgel demonstrated concentration-dependent inhibition of nitrogen oxide (NO) production at 1-1000 µg/mL, and alkaline phosphatase (ALP) activity assays revealed a 1.2-fold increase at concentrations above 50 µg/mL. These findings suggest that hydrogel-coated MNs have potential as a novel drug delivery system for reducing inflammation and promoting osteocyte differentiation due to their enhanced permeability and bioactivity.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buccal application of microneedles coated with an optimized hydrogel containing naproxen and dexamethasone.\",\"authors\":\"Joo-Young Kim, Yun-Sik Um, Young-Guk Na, Da-Eun Kim, Yo Han Song, Suyeon Hwang, Minki Jin, Jooyoung Kim, Seung-Ki Baek, Jong-Suep Baek, Hong-Ki Lee, Cheong-Weon Cho\",\"doi\":\"10.1007/s13346-025-01870-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation and impaired bone regeneration are major challenges in oral and maxillofacial surgery, necessitating the development of effective drug delivery systems. This study aimed to develop a hydrogel-based microneedle (MN) system for the controlled release of anti-inflammatory and osteogenic drugs. A hydrogel loaded with naproxen sodium (NAS) and dexamethasone sodium phosphate (DEX) using poloxamer 407 (NDgel) was prepared using a low-temperature method and optimized via the Box-Behnken design. The optimized hydrogel exhibited a gelation temperature of 30.87 ± 0.64℃, pH 7.92 ± 0.12, and viscosity 87.47 ± 5.66 cP. Physicochemical evaluations, including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), confirmed that NAS and DEX were incorporated in an amorphous form. The hydrogel was coated onto microneedles (NDgMN) via a dip-coating method and dried. In vitro drug release studies in artificial saliva showed NAS and DEX release rates of 21.7 ± 5.8% and 19.0 ± 1.8%, respectively, after 5 min. The NDgMN exhibited significantly enhanced permeability, with 48.5% and 48.7% permeability for NAS and DEX after 48 h, compared to 31.0% and 28.8% for the hydrogel alone. The IC<sub>50</sub> values of the drug solution and drug-containing gel were 123 µg/mL and 203.2 µg/mL, respectively. NDgel demonstrated concentration-dependent inhibition of nitrogen oxide (NO) production at 1-1000 µg/mL, and alkaline phosphatase (ALP) activity assays revealed a 1.2-fold increase at concentrations above 50 µg/mL. These findings suggest that hydrogel-coated MNs have potential as a novel drug delivery system for reducing inflammation and promoting osteocyte differentiation due to their enhanced permeability and bioactivity.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01870-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01870-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

炎症和骨再生受损是口腔颌面外科的主要挑战,需要开发有效的给药系统。本研究旨在开发一种基于水凝胶的微针(MN)系统,用于抗炎和成骨药物的控释。采用低温法制备了以poloxam407 (NDgel)为载体的萘普生钠(NAS)和地塞米松磷酸钠(DEX)水凝胶,并通过Box-Behnken设计进行了优化。优化后的水凝胶胶凝温度为30.87±0.64℃,pH值为7.92±0.12,粘度为87.47±5.66 cP。差示扫描量热法(DSC)和傅里叶变换红外光谱(FT-IR)的理化评价证实,NAS和DEX以无定形形式结合。将水凝胶通过浸渍法涂覆在微针(NDgMN)上并进行干燥。体外药物在人工唾液中的释放研究表明,5 min后,NAS和DEX的释放率分别为21.7±5.8%和19.0±1.8%。NDgMN的渗透性显著增强,48 h后,NAS和DEX的渗透性分别为48.5%和48.7%,而单独水凝胶的渗透性分别为31.0%和28.8%。药液和含药凝胶的IC50值分别为123µg/mL和203.2µg/mL。NDgel对一氧化氮(NO)产生的抑制作用在1-1000µg/mL时呈浓度依赖性,碱性磷酸酶(ALP)活性测定显示,浓度在50µg/mL以上时增加1.2倍。这些发现表明,水凝胶包被的MNs由于其增强的渗透性和生物活性,具有作为一种新的药物传递系统减少炎症和促进骨细胞分化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buccal application of microneedles coated with an optimized hydrogel containing naproxen and dexamethasone.

Inflammation and impaired bone regeneration are major challenges in oral and maxillofacial surgery, necessitating the development of effective drug delivery systems. This study aimed to develop a hydrogel-based microneedle (MN) system for the controlled release of anti-inflammatory and osteogenic drugs. A hydrogel loaded with naproxen sodium (NAS) and dexamethasone sodium phosphate (DEX) using poloxamer 407 (NDgel) was prepared using a low-temperature method and optimized via the Box-Behnken design. The optimized hydrogel exhibited a gelation temperature of 30.87 ± 0.64℃, pH 7.92 ± 0.12, and viscosity 87.47 ± 5.66 cP. Physicochemical evaluations, including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), confirmed that NAS and DEX were incorporated in an amorphous form. The hydrogel was coated onto microneedles (NDgMN) via a dip-coating method and dried. In vitro drug release studies in artificial saliva showed NAS and DEX release rates of 21.7 ± 5.8% and 19.0 ± 1.8%, respectively, after 5 min. The NDgMN exhibited significantly enhanced permeability, with 48.5% and 48.7% permeability for NAS and DEX after 48 h, compared to 31.0% and 28.8% for the hydrogel alone. The IC50 values of the drug solution and drug-containing gel were 123 µg/mL and 203.2 µg/mL, respectively. NDgel demonstrated concentration-dependent inhibition of nitrogen oxide (NO) production at 1-1000 µg/mL, and alkaline phosphatase (ALP) activity assays revealed a 1.2-fold increase at concentrations above 50 µg/mL. These findings suggest that hydrogel-coated MNs have potential as a novel drug delivery system for reducing inflammation and promoting osteocyte differentiation due to their enhanced permeability and bioactivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信