Peng Liu, Congduan Li, Nanfeng Zhang, Jingfeng Yang, Li Wang
{"title":"压缩DETR模型的有效整数量化。","authors":"Peng Liu, Congduan Li, Nanfeng Zhang, Jingfeng Yang, Li Wang","doi":"10.3390/e27040422","DOIUrl":null,"url":null,"abstract":"<p><p>The Transformer-based target detection model, DETR, has powerful feature extraction and recognition capabilities, but its high computational and storage requirements limit its deployment on resource-constrained devices. To solve this problem, we first replace the ResNet-50 backbone network in DETR with Swin-T, which realizes the unification of the backbone network with the Transformer encoder and decoder under the same Transformer processing paradigm. On this basis, we propose a quantized inference scheme based entirely on integers, which effectively serves as a data compression method for reducing memory occupation and computational complexity. Unlike previous approaches that only quantize the linear layer of DETR, we further apply integer approximation to all non-linear operational layers (e.g., Sigmoid, Softmax, LayerNorm, GELU), thus realizing the execution of the entire inference process in the integer domain. Experimental results show that our method reduces the computation and storage to 6.3% and 25% of the original model, respectively, while the average accuracy decreases by only 1.1%, which validates the effectiveness of the method as an efficient and hardware-friendly solution for target detection.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025429/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Integer Quantization for Compressed DETR Models.\",\"authors\":\"Peng Liu, Congduan Li, Nanfeng Zhang, Jingfeng Yang, Li Wang\",\"doi\":\"10.3390/e27040422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Transformer-based target detection model, DETR, has powerful feature extraction and recognition capabilities, but its high computational and storage requirements limit its deployment on resource-constrained devices. To solve this problem, we first replace the ResNet-50 backbone network in DETR with Swin-T, which realizes the unification of the backbone network with the Transformer encoder and decoder under the same Transformer processing paradigm. On this basis, we propose a quantized inference scheme based entirely on integers, which effectively serves as a data compression method for reducing memory occupation and computational complexity. Unlike previous approaches that only quantize the linear layer of DETR, we further apply integer approximation to all non-linear operational layers (e.g., Sigmoid, Softmax, LayerNorm, GELU), thus realizing the execution of the entire inference process in the integer domain. Experimental results show that our method reduces the computation and storage to 6.3% and 25% of the original model, respectively, while the average accuracy decreases by only 1.1%, which validates the effectiveness of the method as an efficient and hardware-friendly solution for target detection.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040422\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040422","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient Integer Quantization for Compressed DETR Models.
The Transformer-based target detection model, DETR, has powerful feature extraction and recognition capabilities, but its high computational and storage requirements limit its deployment on resource-constrained devices. To solve this problem, we first replace the ResNet-50 backbone network in DETR with Swin-T, which realizes the unification of the backbone network with the Transformer encoder and decoder under the same Transformer processing paradigm. On this basis, we propose a quantized inference scheme based entirely on integers, which effectively serves as a data compression method for reducing memory occupation and computational complexity. Unlike previous approaches that only quantize the linear layer of DETR, we further apply integer approximation to all non-linear operational layers (e.g., Sigmoid, Softmax, LayerNorm, GELU), thus realizing the execution of the entire inference process in the integer domain. Experimental results show that our method reduces the computation and storage to 6.3% and 25% of the original model, respectively, while the average accuracy decreases by only 1.1%, which validates the effectiveness of the method as an efficient and hardware-friendly solution for target detection.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.