Jin Huang, Bi Zhou, Feng Zhu, Ying Li, Yingying Li, Rui Zhang, Jingling Zhang, Lili Wang
{"title":"肠道菌群失调作为新生儿溶血性黄疸中肝脏代谢紊乱的潜在生物标志物。","authors":"Jin Huang, Bi Zhou, Feng Zhu, Ying Li, Yingying Li, Rui Zhang, Jingling Zhang, Lili Wang","doi":"10.1186/s12887-025-05692-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to reveal the composition and features of the gut microbiota in neonatal hemolytic jaundice, potentially identifying biomarkers for the diagnosis of this condition.</p><p><strong>Methods: </strong>A total of 62 neonates with hemolytic jaundice and 20 healthy neonates were ultimately enrolled in the study. Clinical data and fecal samples from these infants were collected separately. The composition and features of the gut microbiota were analyzed using 16S rRNA high-throughput sequencing technology. Alpha and Beta diversity analyses were conducted to elucidate the differences in gut microbiota composition. Additionally, LEfSe analysis was employed to identify differential microorganisms. Finally, PICRUSt2, metagenomeSeq, and BugBase software were utilized to investigate the phenotypic and functional differences in the gut microbiota.</p><p><strong>Results: </strong>Beta diversity analysis revealed significant differences in the composition of gut microbiota. LEfSe analysis demonstrated a significant increase in the relative abundance of Enterobacter in neonatal hemolytic jaundice. Furthermore, METACYC metabolic pathway analysis based on PICRUSt2 indicated a notable elevation in liver-related metabolic pathways in neonatal hemolytic jaundice. The metabolic analysis of differential bacterial genera revealed that Enterobacter secretes a wide array of enzymes, including oxidases, oxidoreductases, transferases, hydrolases, isomerases, and lyases. Notably, these enzymes are responsible for altering the liver metabolic pathways in neonates with hemolytic jaundice.</p><p><strong>Conclusions: </strong>Enterobacter is linked to multiple metabolic pathways in the liver via the secretion of numerous enzymes along the gut-liver axis metabolic pathway. This interaction indirectly reflects the metabolic status and disease progression in neonatal hemolytic jaundice. Consequently, Enterobacter may serve as a potential diagnostic marker of the gut microbiota for assessing liver metabolic disorders associated with hemolytic jaundice.</p>","PeriodicalId":9144,"journal":{"name":"BMC Pediatrics","volume":"25 1","pages":"337"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut microbiome dysbiosis as a potential biomarker for liver metabolic disorders in in neonatal hemolytic jaundice.\",\"authors\":\"Jin Huang, Bi Zhou, Feng Zhu, Ying Li, Yingying Li, Rui Zhang, Jingling Zhang, Lili Wang\",\"doi\":\"10.1186/s12887-025-05692-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aims to reveal the composition and features of the gut microbiota in neonatal hemolytic jaundice, potentially identifying biomarkers for the diagnosis of this condition.</p><p><strong>Methods: </strong>A total of 62 neonates with hemolytic jaundice and 20 healthy neonates were ultimately enrolled in the study. Clinical data and fecal samples from these infants were collected separately. The composition and features of the gut microbiota were analyzed using 16S rRNA high-throughput sequencing technology. Alpha and Beta diversity analyses were conducted to elucidate the differences in gut microbiota composition. Additionally, LEfSe analysis was employed to identify differential microorganisms. Finally, PICRUSt2, metagenomeSeq, and BugBase software were utilized to investigate the phenotypic and functional differences in the gut microbiota.</p><p><strong>Results: </strong>Beta diversity analysis revealed significant differences in the composition of gut microbiota. LEfSe analysis demonstrated a significant increase in the relative abundance of Enterobacter in neonatal hemolytic jaundice. Furthermore, METACYC metabolic pathway analysis based on PICRUSt2 indicated a notable elevation in liver-related metabolic pathways in neonatal hemolytic jaundice. The metabolic analysis of differential bacterial genera revealed that Enterobacter secretes a wide array of enzymes, including oxidases, oxidoreductases, transferases, hydrolases, isomerases, and lyases. Notably, these enzymes are responsible for altering the liver metabolic pathways in neonates with hemolytic jaundice.</p><p><strong>Conclusions: </strong>Enterobacter is linked to multiple metabolic pathways in the liver via the secretion of numerous enzymes along the gut-liver axis metabolic pathway. This interaction indirectly reflects the metabolic status and disease progression in neonatal hemolytic jaundice. Consequently, Enterobacter may serve as a potential diagnostic marker of the gut microbiota for assessing liver metabolic disorders associated with hemolytic jaundice.</p>\",\"PeriodicalId\":9144,\"journal\":{\"name\":\"BMC Pediatrics\",\"volume\":\"25 1\",\"pages\":\"337\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pediatrics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12887-025-05692-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12887-025-05692-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Gut microbiome dysbiosis as a potential biomarker for liver metabolic disorders in in neonatal hemolytic jaundice.
Background: This study aims to reveal the composition and features of the gut microbiota in neonatal hemolytic jaundice, potentially identifying biomarkers for the diagnosis of this condition.
Methods: A total of 62 neonates with hemolytic jaundice and 20 healthy neonates were ultimately enrolled in the study. Clinical data and fecal samples from these infants were collected separately. The composition and features of the gut microbiota were analyzed using 16S rRNA high-throughput sequencing technology. Alpha and Beta diversity analyses were conducted to elucidate the differences in gut microbiota composition. Additionally, LEfSe analysis was employed to identify differential microorganisms. Finally, PICRUSt2, metagenomeSeq, and BugBase software were utilized to investigate the phenotypic and functional differences in the gut microbiota.
Results: Beta diversity analysis revealed significant differences in the composition of gut microbiota. LEfSe analysis demonstrated a significant increase in the relative abundance of Enterobacter in neonatal hemolytic jaundice. Furthermore, METACYC metabolic pathway analysis based on PICRUSt2 indicated a notable elevation in liver-related metabolic pathways in neonatal hemolytic jaundice. The metabolic analysis of differential bacterial genera revealed that Enterobacter secretes a wide array of enzymes, including oxidases, oxidoreductases, transferases, hydrolases, isomerases, and lyases. Notably, these enzymes are responsible for altering the liver metabolic pathways in neonates with hemolytic jaundice.
Conclusions: Enterobacter is linked to multiple metabolic pathways in the liver via the secretion of numerous enzymes along the gut-liver axis metabolic pathway. This interaction indirectly reflects the metabolic status and disease progression in neonatal hemolytic jaundice. Consequently, Enterobacter may serve as a potential diagnostic marker of the gut microbiota for assessing liver metabolic disorders associated with hemolytic jaundice.
期刊介绍:
BMC Pediatrics is an open access journal publishing peer-reviewed research articles in all aspects of health care in neonates, children and adolescents, as well as related molecular genetics, pathophysiology, and epidemiology.