{"title":"褪黑激素MT1受体在绝经后妇女腔内浸润性导管乳腺癌中的表达。","authors":"Leda Pistiolis, Sahar Alawieh, Thorhildur Halldorsdottir, Anikó Kovács, Roger Olofsson Bagge","doi":"10.3390/biom15040581","DOIUrl":null,"url":null,"abstract":"<p><p>Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study was to investigate the expression of MT1 in hormone-receptor-positive, HER2-negative invasive ductal breast carcinoma in postmenopausal women and its possible correlations with clinicopathological parameters and survival. A total of 118 patients with luminal A/B primary breast cancer with or without axillary metastases were identified. The MT1 receptor expression was immunohistochemically assessed as a percentage of stained cells and a weighted index (WI) (percentage multiplied by staining intensity). Most tumor samples (84.7%) and metastasized lymph nodes (96%) stained positive for MT1, with varying intensity. No statistically significant correlations were found between the MT1 expression or the WI in the primary tumor and the patient and tumor characteristics, or the MT1 and WI in the metastasized lymph nodes. The survival analysis did not reveal a significant effect of MT1 expression or the WI on the risk of recurrence or survival.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Melatonin MT1 Receptor Expression in Luminal Invasive Ductal Breast Carcinoma in Postmenopausal Women.\",\"authors\":\"Leda Pistiolis, Sahar Alawieh, Thorhildur Halldorsdottir, Anikó Kovács, Roger Olofsson Bagge\",\"doi\":\"10.3390/biom15040581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study was to investigate the expression of MT1 in hormone-receptor-positive, HER2-negative invasive ductal breast carcinoma in postmenopausal women and its possible correlations with clinicopathological parameters and survival. A total of 118 patients with luminal A/B primary breast cancer with or without axillary metastases were identified. The MT1 receptor expression was immunohistochemically assessed as a percentage of stained cells and a weighted index (WI) (percentage multiplied by staining intensity). Most tumor samples (84.7%) and metastasized lymph nodes (96%) stained positive for MT1, with varying intensity. No statistically significant correlations were found between the MT1 expression or the WI in the primary tumor and the patient and tumor characteristics, or the MT1 and WI in the metastasized lymph nodes. The survival analysis did not reveal a significant effect of MT1 expression or the WI on the risk of recurrence or survival.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15040581\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15040581","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Melatonin MT1 Receptor Expression in Luminal Invasive Ductal Breast Carcinoma in Postmenopausal Women.
Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study was to investigate the expression of MT1 in hormone-receptor-positive, HER2-negative invasive ductal breast carcinoma in postmenopausal women and its possible correlations with clinicopathological parameters and survival. A total of 118 patients with luminal A/B primary breast cancer with or without axillary metastases were identified. The MT1 receptor expression was immunohistochemically assessed as a percentage of stained cells and a weighted index (WI) (percentage multiplied by staining intensity). Most tumor samples (84.7%) and metastasized lymph nodes (96%) stained positive for MT1, with varying intensity. No statistically significant correlations were found between the MT1 expression or the WI in the primary tumor and the patient and tumor characteristics, or the MT1 and WI in the metastasized lymph nodes. The survival analysis did not reveal a significant effect of MT1 expression or the WI on the risk of recurrence or survival.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.