Nicolas J Scrutton Alvarado, Ziyu Zhao, Tomoko Yamada, Yue Yang
{"title":"异染色质相关基因密集亚室在早期神经元发育中的重组。","authors":"Nicolas J Scrutton Alvarado, Ziyu Zhao, Tomoko Yamada, Yue Yang","doi":"10.1242/bio.062005","DOIUrl":null,"url":null,"abstract":"<p><p>The 3D organization of the genome has emerged as an important regulator of cellular development. Post-mitotic neurons undergo conserved changes in genome organization, such as the inward radial repositioning of heterochromatin-rich chromosomes as they differentiate. Additionally, transcriptionally active but heterochromatin-associated gene-dense (hGD) regions significantly strengthen their long-distance interactions during cerebellar development. However, the specific developmental stages during which these nuclear changes take place have remained poorly defined. Here, we report that hGD regions relocalize toward the nuclear interior and strengthen their chromosomal interactions as immature granule neurons transition from active cell migration to subsequent stages of neuronal differentiation. During this period, hGD genomic regions are coordinately repositioned in the nucleus alongside their physically tethered heterochromatic chromocenters. Despite these major changes in nuclear organization, the hGD subcompartment remains distinct from other transcriptionally active or repressive nuclear bodies, including heterochromatic chromocenters, throughout development. Notably, these nuclear changes appear to be independent of transcriptional changes that occur during granule neuron differentiation. Together, our results provide insights into the developmental timing of structural changes in the chromosomes of post-mitotic neurons.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reorganization of the heterochromatin-associated gene-dense subcompartment in early neuronal development.\",\"authors\":\"Nicolas J Scrutton Alvarado, Ziyu Zhao, Tomoko Yamada, Yue Yang\",\"doi\":\"10.1242/bio.062005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 3D organization of the genome has emerged as an important regulator of cellular development. Post-mitotic neurons undergo conserved changes in genome organization, such as the inward radial repositioning of heterochromatin-rich chromosomes as they differentiate. Additionally, transcriptionally active but heterochromatin-associated gene-dense (hGD) regions significantly strengthen their long-distance interactions during cerebellar development. However, the specific developmental stages during which these nuclear changes take place have remained poorly defined. Here, we report that hGD regions relocalize toward the nuclear interior and strengthen their chromosomal interactions as immature granule neurons transition from active cell migration to subsequent stages of neuronal differentiation. During this period, hGD genomic regions are coordinately repositioned in the nucleus alongside their physically tethered heterochromatic chromocenters. Despite these major changes in nuclear organization, the hGD subcompartment remains distinct from other transcriptionally active or repressive nuclear bodies, including heterochromatic chromocenters, throughout development. Notably, these nuclear changes appear to be independent of transcriptional changes that occur during granule neuron differentiation. Together, our results provide insights into the developmental timing of structural changes in the chromosomes of post-mitotic neurons.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.062005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.062005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Reorganization of the heterochromatin-associated gene-dense subcompartment in early neuronal development.
The 3D organization of the genome has emerged as an important regulator of cellular development. Post-mitotic neurons undergo conserved changes in genome organization, such as the inward radial repositioning of heterochromatin-rich chromosomes as they differentiate. Additionally, transcriptionally active but heterochromatin-associated gene-dense (hGD) regions significantly strengthen their long-distance interactions during cerebellar development. However, the specific developmental stages during which these nuclear changes take place have remained poorly defined. Here, we report that hGD regions relocalize toward the nuclear interior and strengthen their chromosomal interactions as immature granule neurons transition from active cell migration to subsequent stages of neuronal differentiation. During this period, hGD genomic regions are coordinately repositioned in the nucleus alongside their physically tethered heterochromatic chromocenters. Despite these major changes in nuclear organization, the hGD subcompartment remains distinct from other transcriptionally active or repressive nuclear bodies, including heterochromatic chromocenters, throughout development. Notably, these nuclear changes appear to be independent of transcriptional changes that occur during granule neuron differentiation. Together, our results provide insights into the developmental timing of structural changes in the chromosomes of post-mitotic neurons.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.