参数工作模型的双稳健方差估计。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf054
Bonnie E Shook-Sa, Paul N Zivich, Chanhwa Lee, Keyi Xue, Rachael K Ross, Jessie K Edwards, Jeffrey S A Stringer, Stephen R Cole
{"title":"参数工作模型的双稳健方差估计。","authors":"Bonnie E Shook-Sa, Paul N Zivich, Chanhwa Lee, Keyi Xue, Rachael K Ross, Jessie K Edwards, Jeffrey S A Stringer, Stephen R Cole","doi":"10.1093/biomtc/ujaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or an exposure model is correctly specified. However, for nonrandomized exposures, the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (ie, outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only 1 working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Double robust variance estimation with parametric working models.\",\"authors\":\"Bonnie E Shook-Sa, Paul N Zivich, Chanhwa Lee, Keyi Xue, Rachael K Ross, Jessie K Edwards, Jeffrey S A Stringer, Stephen R Cole\",\"doi\":\"10.1093/biomtc/ujaf054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or an exposure model is correctly specified. However, for nonrandomized exposures, the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (ie, outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only 1 working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf054\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双鲁棒估计器在因果推理领域受到欢迎,因为它们能够在正确指定结果或暴露模型时提供一致的点估计。然而,对于非随机暴露,基于影响函数的方差估计器通常与平均因果效应的双鲁棒估计器一起使用,只有在正确指定两个工作模型(即结果模型和暴露模型)时才一致。本文证明了经验夹心方差估计量和非参数自举是双鲁棒方差估计量。也就是说,当只有一个工作模型被正确指定时,它们被期望提供导致名义置信区间覆盖的方差的有效估计。仿真研究说明了在假设参数工作模型的情况下,基于影响函数、经验三明治和非参数自举方差估计的性质。估计器应用于改善孕酮妊娠结局(IPOP)研究的数据,以估计母体贫血对艾滋病毒感染妇女出生体重的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double robust variance estimation with parametric working models.

Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or an exposure model is correctly specified. However, for nonrandomized exposures, the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (ie, outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only 1 working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信