Irfan Ali Sabir, Farhan Nabi, Muhammad Aamir Manzoor, Fazal Ullah, Muhammad Saeed, Abeer Hashem, Jawaher Alkahtani, Elsayed Fathi Abd-Allah, Muslim Qadir
{"title":"几丁质酶基因家族的全基因组鉴定:对应激反应机制和进化动力学的见解。","authors":"Irfan Ali Sabir, Farhan Nabi, Muhammad Aamir Manzoor, Fazal Ullah, Muhammad Saeed, Abeer Hashem, Jawaher Alkahtani, Elsayed Fathi Abd-Allah, Muslim Qadir","doi":"10.1186/s12870-025-06475-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chitinase, a key enzyme family within the pathogenesis-related (PR) protein, plays a crucial role in plant defense by degrading chitin, a major component of fungal cell walls. The HvCHT genes in barley are involved in responses to biotic and abiotic stresses, although their full range of functions is not yet fully understood.</p><p><strong>Results: </strong>In this study, we identified 24 potential HvCHT genes through a genome-wide analysis. The comparative synteny analysis showed conserved relationships between HvCHT genes and their homologs in Sorghum bicolor, Oryza sativa, and Arabidopsis thaliana. Chromosomal mapping, gene structure, characterization, protein motif analysis, and miRNA regulation were performed to gain insight into the genetic structures of these genes. Segmental duplication events observed in the HvCHT family suggest an important role in the evolutionary development of these genes. Additionally, cis-regulatory element analysis revealed the presence of light-responsive elements, and regulators for Abscisic acid, methyl jasmonate (MeJA), salicylic acid, and gibberellins, indicating potential involvement in stress responses. Transcriptomic data showed differential expression of HvCHT genes in response to salt stress, with distinct patterns observed in leaf and root tissues. Furthermore, the genes defensive responses to drought stress and Fusarium infection were characterized across multiple time points. Notably, qRT-PCR analysis confirmed the upregulation of HvCHT1, HvCHT4, and HvCHT17, highlighting their potential involvement in stress-related pathways.</p><p><strong>Conclusion: </strong>These findings provide a comprehensive overview of the HvCHT genes role in barley defense mechanisms, underlining their regulatory functions in biotic and abiotic stressors. The results lay the groundwork for future functional studies on HvCHT genes, with the potential to enhance stress tolerance in crops.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"628"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070782/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of chitinase gene family in Hordeum vulgare: insights into stress response mechanisms and evolutionary dynamics.\",\"authors\":\"Irfan Ali Sabir, Farhan Nabi, Muhammad Aamir Manzoor, Fazal Ullah, Muhammad Saeed, Abeer Hashem, Jawaher Alkahtani, Elsayed Fathi Abd-Allah, Muslim Qadir\",\"doi\":\"10.1186/s12870-025-06475-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chitinase, a key enzyme family within the pathogenesis-related (PR) protein, plays a crucial role in plant defense by degrading chitin, a major component of fungal cell walls. The HvCHT genes in barley are involved in responses to biotic and abiotic stresses, although their full range of functions is not yet fully understood.</p><p><strong>Results: </strong>In this study, we identified 24 potential HvCHT genes through a genome-wide analysis. The comparative synteny analysis showed conserved relationships between HvCHT genes and their homologs in Sorghum bicolor, Oryza sativa, and Arabidopsis thaliana. Chromosomal mapping, gene structure, characterization, protein motif analysis, and miRNA regulation were performed to gain insight into the genetic structures of these genes. Segmental duplication events observed in the HvCHT family suggest an important role in the evolutionary development of these genes. Additionally, cis-regulatory element analysis revealed the presence of light-responsive elements, and regulators for Abscisic acid, methyl jasmonate (MeJA), salicylic acid, and gibberellins, indicating potential involvement in stress responses. Transcriptomic data showed differential expression of HvCHT genes in response to salt stress, with distinct patterns observed in leaf and root tissues. Furthermore, the genes defensive responses to drought stress and Fusarium infection were characterized across multiple time points. Notably, qRT-PCR analysis confirmed the upregulation of HvCHT1, HvCHT4, and HvCHT17, highlighting their potential involvement in stress-related pathways.</p><p><strong>Conclusion: </strong>These findings provide a comprehensive overview of the HvCHT genes role in barley defense mechanisms, underlining their regulatory functions in biotic and abiotic stressors. The results lay the groundwork for future functional studies on HvCHT genes, with the potential to enhance stress tolerance in crops.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"628\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06475-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06475-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-wide identification of chitinase gene family in Hordeum vulgare: insights into stress response mechanisms and evolutionary dynamics.
Background: Chitinase, a key enzyme family within the pathogenesis-related (PR) protein, plays a crucial role in plant defense by degrading chitin, a major component of fungal cell walls. The HvCHT genes in barley are involved in responses to biotic and abiotic stresses, although their full range of functions is not yet fully understood.
Results: In this study, we identified 24 potential HvCHT genes through a genome-wide analysis. The comparative synteny analysis showed conserved relationships between HvCHT genes and their homologs in Sorghum bicolor, Oryza sativa, and Arabidopsis thaliana. Chromosomal mapping, gene structure, characterization, protein motif analysis, and miRNA regulation were performed to gain insight into the genetic structures of these genes. Segmental duplication events observed in the HvCHT family suggest an important role in the evolutionary development of these genes. Additionally, cis-regulatory element analysis revealed the presence of light-responsive elements, and regulators for Abscisic acid, methyl jasmonate (MeJA), salicylic acid, and gibberellins, indicating potential involvement in stress responses. Transcriptomic data showed differential expression of HvCHT genes in response to salt stress, with distinct patterns observed in leaf and root tissues. Furthermore, the genes defensive responses to drought stress and Fusarium infection were characterized across multiple time points. Notably, qRT-PCR analysis confirmed the upregulation of HvCHT1, HvCHT4, and HvCHT17, highlighting their potential involvement in stress-related pathways.
Conclusion: These findings provide a comprehensive overview of the HvCHT genes role in barley defense mechanisms, underlining their regulatory functions in biotic and abiotic stressors. The results lay the groundwork for future functional studies on HvCHT genes, with the potential to enhance stress tolerance in crops.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.