Dan Zeng, Zuhua Song, Qian Liu, Jie Huang, Xinwei Wang, Zhuoyue Tang
{"title":"双层探测器光谱ct衍生碘图预测胰腺导管腺癌Ki-67 PI的放射组学分析。","authors":"Dan Zeng, Zuhua Song, Qian Liu, Jie Huang, Xinwei Wang, Zhuoyue Tang","doi":"10.1186/s12880-025-01664-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the feasibility of radiomics analysis using dual-layer detector spectral CT (DLCT)-derived iodine maps for the preoperative prediction of the Ki-67 proliferation index (PI) in pancreatic ductal adenocarcinoma (PDAC).</p><p><strong>Materials and methods: </strong>A total of 168 PDAC patients who underwent DLCT examination were included and randomly allocated to the training (n = 118) and validation (n = 50) sets. A clinical model was constructed using independent clinicoradiological features identified through multivariate logistic regression analysis in the training set. The radiomics signature was generated based on the coefficients of selected features from iodine maps in the arterial and portal venous phases of DLCT. Finally, a radiomics-clinical model was developed by integrating the radiomics signature and significant clinicoradiological features. The predictive performance of three models was evaluated using the Receiver Operating Characteristic (ROC) curve and Decision Curve Analysis. The optimal model was then used to develop a nomogram, with goodness-of-fit evaluated through the calibration curve.</p><p><strong>Results: </strong>The radiomics-clinical model integrating radiomics signature, CA19-9, and CT-reported regional lymph node status demonstrated excellent performance in predicting Ki-67 PI in PDAC, which showed an area under the ROC curve of 0.979 and 0.956 in the training and validation sets, respectively. The radiomics-clinical nomogram demonstrated the improved net benefit and exhibited satisfactory consistency.</p><p><strong>Conclusions: </strong>This exploratory study demonstrated the feasibility of using DLCT-derived iodine map-based radiomics to predict Ki-67 PI preoperatively in PDAC patients. While preliminary, our findings highlight the potential of functional imaging combined with radiomics for personalized treatment planning.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"124"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics analysis of dual-layer detector spectral CT-derived iodine maps for predicting Ki-67 PI in pancreatic ductal adenocarcinoma.\",\"authors\":\"Dan Zeng, Zuhua Song, Qian Liu, Jie Huang, Xinwei Wang, Zhuoyue Tang\",\"doi\":\"10.1186/s12880-025-01664-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate the feasibility of radiomics analysis using dual-layer detector spectral CT (DLCT)-derived iodine maps for the preoperative prediction of the Ki-67 proliferation index (PI) in pancreatic ductal adenocarcinoma (PDAC).</p><p><strong>Materials and methods: </strong>A total of 168 PDAC patients who underwent DLCT examination were included and randomly allocated to the training (n = 118) and validation (n = 50) sets. A clinical model was constructed using independent clinicoradiological features identified through multivariate logistic regression analysis in the training set. The radiomics signature was generated based on the coefficients of selected features from iodine maps in the arterial and portal venous phases of DLCT. Finally, a radiomics-clinical model was developed by integrating the radiomics signature and significant clinicoradiological features. The predictive performance of three models was evaluated using the Receiver Operating Characteristic (ROC) curve and Decision Curve Analysis. The optimal model was then used to develop a nomogram, with goodness-of-fit evaluated through the calibration curve.</p><p><strong>Results: </strong>The radiomics-clinical model integrating radiomics signature, CA19-9, and CT-reported regional lymph node status demonstrated excellent performance in predicting Ki-67 PI in PDAC, which showed an area under the ROC curve of 0.979 and 0.956 in the training and validation sets, respectively. The radiomics-clinical nomogram demonstrated the improved net benefit and exhibited satisfactory consistency.</p><p><strong>Conclusions: </strong>This exploratory study demonstrated the feasibility of using DLCT-derived iodine map-based radiomics to predict Ki-67 PI preoperatively in PDAC patients. While preliminary, our findings highlight the potential of functional imaging combined with radiomics for personalized treatment planning.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"124\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01664-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01664-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radiomics analysis of dual-layer detector spectral CT-derived iodine maps for predicting Ki-67 PI in pancreatic ductal adenocarcinoma.
Objective: To evaluate the feasibility of radiomics analysis using dual-layer detector spectral CT (DLCT)-derived iodine maps for the preoperative prediction of the Ki-67 proliferation index (PI) in pancreatic ductal adenocarcinoma (PDAC).
Materials and methods: A total of 168 PDAC patients who underwent DLCT examination were included and randomly allocated to the training (n = 118) and validation (n = 50) sets. A clinical model was constructed using independent clinicoradiological features identified through multivariate logistic regression analysis in the training set. The radiomics signature was generated based on the coefficients of selected features from iodine maps in the arterial and portal venous phases of DLCT. Finally, a radiomics-clinical model was developed by integrating the radiomics signature and significant clinicoradiological features. The predictive performance of three models was evaluated using the Receiver Operating Characteristic (ROC) curve and Decision Curve Analysis. The optimal model was then used to develop a nomogram, with goodness-of-fit evaluated through the calibration curve.
Results: The radiomics-clinical model integrating radiomics signature, CA19-9, and CT-reported regional lymph node status demonstrated excellent performance in predicting Ki-67 PI in PDAC, which showed an area under the ROC curve of 0.979 and 0.956 in the training and validation sets, respectively. The radiomics-clinical nomogram demonstrated the improved net benefit and exhibited satisfactory consistency.
Conclusions: This exploratory study demonstrated the feasibility of using DLCT-derived iodine map-based radiomics to predict Ki-67 PI preoperatively in PDAC patients. While preliminary, our findings highlight the potential of functional imaging combined with radiomics for personalized treatment planning.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.