{"title":"Reed-Muller码的拟最优路径收敛辅助自同构集成译码。","authors":"Kairui Tian, He Sun, Yukai Liu, Rongke Liu","doi":"10.3390/e27040424","DOIUrl":null,"url":null,"abstract":"<p><p>By exploiting the rich automorphisms of Reed-Muller (RM) codes, the recently developed automorphism ensemble (AE) successive cancellation (SC) decoder achieves a near-maximum-likelihood (ML) performance for short block lengths. However, the appealing performance of AE-SC decoding arises from the diversity gain that requires a list of SC decoding attempts, which results in a high decoding complexity. To address this issue, this paper proposes a novel quasi-optimal path convergence (QOPC)-aided early termination (ET) technique for AE-SC decoding. This technique detects strong convergence between the partial path metrics (PPMs) of SC constituent decoders to reliably identify the optimal decoding path at runtime. When the QOPC-based ET criterion is satisfied during the AE-SC decoding, only the identified path is allowed to proceed for a complete codeword estimate, while the remaining paths are terminated early. The numerical results demonstrated that for medium-to-high-rate RM codes in the short-length regime, the proposed QOPC-aided ET method incurred negligible performance loss when applied to fully parallel AE-SC decoding. Meanwhile, it achieved a complexity reduction that ranged from 35.9% to 47.4% at a target block error rate (BLER) of 10-3, where it consistently outperformed a state-of-the-art path metric threshold (PMT)-aided ET method. Additionally, under a partially parallel framework of AE-SC decoding, the proposed QOPC-aided ET method achieved a greater complexity reduction that ranged from 81.3% to 86.7% at a low BLER that approached 10-5 while maintaining a near-ML decoding performance.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed-Muller Codes.\",\"authors\":\"Kairui Tian, He Sun, Yukai Liu, Rongke Liu\",\"doi\":\"10.3390/e27040424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By exploiting the rich automorphisms of Reed-Muller (RM) codes, the recently developed automorphism ensemble (AE) successive cancellation (SC) decoder achieves a near-maximum-likelihood (ML) performance for short block lengths. However, the appealing performance of AE-SC decoding arises from the diversity gain that requires a list of SC decoding attempts, which results in a high decoding complexity. To address this issue, this paper proposes a novel quasi-optimal path convergence (QOPC)-aided early termination (ET) technique for AE-SC decoding. This technique detects strong convergence between the partial path metrics (PPMs) of SC constituent decoders to reliably identify the optimal decoding path at runtime. When the QOPC-based ET criterion is satisfied during the AE-SC decoding, only the identified path is allowed to proceed for a complete codeword estimate, while the remaining paths are terminated early. The numerical results demonstrated that for medium-to-high-rate RM codes in the short-length regime, the proposed QOPC-aided ET method incurred negligible performance loss when applied to fully parallel AE-SC decoding. Meanwhile, it achieved a complexity reduction that ranged from 35.9% to 47.4% at a target block error rate (BLER) of 10-3, where it consistently outperformed a state-of-the-art path metric threshold (PMT)-aided ET method. Additionally, under a partially parallel framework of AE-SC decoding, the proposed QOPC-aided ET method achieved a greater complexity reduction that ranged from 81.3% to 86.7% at a low BLER that approached 10-5 while maintaining a near-ML decoding performance.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040424\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040424","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed-Muller Codes.
By exploiting the rich automorphisms of Reed-Muller (RM) codes, the recently developed automorphism ensemble (AE) successive cancellation (SC) decoder achieves a near-maximum-likelihood (ML) performance for short block lengths. However, the appealing performance of AE-SC decoding arises from the diversity gain that requires a list of SC decoding attempts, which results in a high decoding complexity. To address this issue, this paper proposes a novel quasi-optimal path convergence (QOPC)-aided early termination (ET) technique for AE-SC decoding. This technique detects strong convergence between the partial path metrics (PPMs) of SC constituent decoders to reliably identify the optimal decoding path at runtime. When the QOPC-based ET criterion is satisfied during the AE-SC decoding, only the identified path is allowed to proceed for a complete codeword estimate, while the remaining paths are terminated early. The numerical results demonstrated that for medium-to-high-rate RM codes in the short-length regime, the proposed QOPC-aided ET method incurred negligible performance loss when applied to fully parallel AE-SC decoding. Meanwhile, it achieved a complexity reduction that ranged from 35.9% to 47.4% at a target block error rate (BLER) of 10-3, where it consistently outperformed a state-of-the-art path metric threshold (PMT)-aided ET method. Additionally, under a partially parallel framework of AE-SC decoding, the proposed QOPC-aided ET method achieved a greater complexity reduction that ranged from 81.3% to 86.7% at a low BLER that approached 10-5 while maintaining a near-ML decoding performance.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.