基于动态突变感知和协同校正的自适应卡尔曼滤波定位标定方法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-03 DOI:10.3390/e27040380
Zijia Huang, Qiushi Xu, Menghao Sun, Xuzhen Zhu, Shaoshuai Fan
{"title":"基于动态突变感知和协同校正的自适应卡尔曼滤波定位标定方法。","authors":"Zijia Huang, Qiushi Xu, Menghao Sun, Xuzhen Zhu, Shaoshuai Fan","doi":"10.3390/e27040380","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the problem of reduced positioning accuracy of unmanned swarm navigation systems due to dynamic abrupt noise in a complex electromagnetic environment, this paper proposes an adaptive Kalman filtering positioning and calibration method based on dynamic mutation perception and collaborative correction. This method optimizes the performance of Kalman filtering by monitoring the mutation of acceleration and velocity in real time, designing a dynamic threshold detection mechanism, adaptively adjusting the covariance matrix, and using multidimensional scaling analysis to calculate the similarity of trajectories and collaboratively correct the current state. The experiment uses simulation and real scene data and compares algorithms such as the traditional extended Kalman filter to verify the effectiveness of the proposed method, providing an effective solution for the collaborative positioning of an unmanned swarm under complex electromagnetic interference.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025555/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive Kalman Filtering Localization Calibration Method Based on Dynamic Mutation Perception and Collaborative Correction.\",\"authors\":\"Zijia Huang, Qiushi Xu, Menghao Sun, Xuzhen Zhu, Shaoshuai Fan\",\"doi\":\"10.3390/e27040380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aiming at the problem of reduced positioning accuracy of unmanned swarm navigation systems due to dynamic abrupt noise in a complex electromagnetic environment, this paper proposes an adaptive Kalman filtering positioning and calibration method based on dynamic mutation perception and collaborative correction. This method optimizes the performance of Kalman filtering by monitoring the mutation of acceleration and velocity in real time, designing a dynamic threshold detection mechanism, adaptively adjusting the covariance matrix, and using multidimensional scaling analysis to calculate the similarity of trajectories and collaboratively correct the current state. The experiment uses simulation and real scene data and compares algorithms such as the traditional extended Kalman filter to verify the effectiveness of the proposed method, providing an effective solution for the collaborative positioning of an unmanned swarm under complex electromagnetic interference.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025555/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040380\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040380","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对复杂电磁环境下动态突变噪声降低无人群导航系统定位精度的问题,提出了一种基于动态突变感知和协同校正的自适应卡尔曼滤波定位标定方法。该方法通过实时监测加速度和速度的突变,设计动态阈值检测机制,自适应调整协方差矩阵,并利用多维尺度分析计算轨迹相似度,协同修正当前状态来优化卡尔曼滤波性能。实验采用仿真和真实场景数据,对比传统扩展卡尔曼滤波等算法,验证了所提方法的有效性,为复杂电磁干扰下无人群体协同定位提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Kalman Filtering Localization Calibration Method Based on Dynamic Mutation Perception and Collaborative Correction.

Aiming at the problem of reduced positioning accuracy of unmanned swarm navigation systems due to dynamic abrupt noise in a complex electromagnetic environment, this paper proposes an adaptive Kalman filtering positioning and calibration method based on dynamic mutation perception and collaborative correction. This method optimizes the performance of Kalman filtering by monitoring the mutation of acceleration and velocity in real time, designing a dynamic threshold detection mechanism, adaptively adjusting the covariance matrix, and using multidimensional scaling analysis to calculate the similarity of trajectories and collaboratively correct the current state. The experiment uses simulation and real scene data and compares algorithms such as the traditional extended Kalman filter to verify the effectiveness of the proposed method, providing an effective solution for the collaborative positioning of an unmanned swarm under complex electromagnetic interference.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信