Lars Erik Gjerløw, Arnstein Sunde, Eva Maria Støa, Jan Helgerud, Jan-Michael Johansen, Henrik Hjortland, Øyvind Støren
{"title":"确定800米跑步和800米滑雪测力仪性能变化的生理变量。","authors":"Lars Erik Gjerløw, Arnstein Sunde, Eva Maria Støa, Jan Helgerud, Jan-Michael Johansen, Henrik Hjortland, Øyvind Støren","doi":"10.1007/s00421-025-05765-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates associations between changes in 800 m time trial performance in running or ski ergometer double poling, and changes in physiologic variables after a seven-week observational period. Forty six athletes ranging from recreational to elite level, participated in either a run (RUN) or a ski ergometer (SKI) observational study.</p><p><strong>Methods: </strong>The participants performed pre- and post-tests in; 800-m time trial (800TT), 100-m time trial (MSS or MSP), peak oxygen uptake (VO<sub>2peak</sub>), oxygen cost of running (C<sub>R</sub>) or double poling (C<sub>DP</sub>), time to exhaustion (TTE) at 130% maximal aerobic speed (MAS) or maximal aerobic power (MAP), and maximal accumulated oxygen deficit (MAOD) in SKI. They also performed one repetition maximum (1RM), half-squat (RUN) or 1RM lat pull-down (SKI).</p><p><strong>Results: </strong>Moderate correlations were found between changes in both MAP and maximal strength and changes in 800TT for SKI (r = - 0.51 and r = - 0.51, respectively, p < 0.05). For RUN, MAS and the 0.8 MAS + 0.2 MSS equation correlated (r = - 0.71 and r = - 0.73, respectively, p < 0.01) with 800TT. VO<sub>2peak</sub> was the most important contributor to MAS improvements (RUN) while C<sub>DP</sub> was the most important contributor to MAP improvements (SKI). No correlations were found between changes in TTE at 130% MAS or MAP and, or MAOD, and changes in 800TT, for neither RUN nor SKI. The results from the present study suggest focusing on training to improve maximal oxygen uptake (VO<sub>2max</sub>), work economy and maximal sprint speed to improve performance in middle-distance running and ski sprinting.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining physiologic variables for changes in 800-m running and 800-m ski ergometer performance.\",\"authors\":\"Lars Erik Gjerløw, Arnstein Sunde, Eva Maria Støa, Jan Helgerud, Jan-Michael Johansen, Henrik Hjortland, Øyvind Støren\",\"doi\":\"10.1007/s00421-025-05765-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study investigates associations between changes in 800 m time trial performance in running or ski ergometer double poling, and changes in physiologic variables after a seven-week observational period. Forty six athletes ranging from recreational to elite level, participated in either a run (RUN) or a ski ergometer (SKI) observational study.</p><p><strong>Methods: </strong>The participants performed pre- and post-tests in; 800-m time trial (800TT), 100-m time trial (MSS or MSP), peak oxygen uptake (VO<sub>2peak</sub>), oxygen cost of running (C<sub>R</sub>) or double poling (C<sub>DP</sub>), time to exhaustion (TTE) at 130% maximal aerobic speed (MAS) or maximal aerobic power (MAP), and maximal accumulated oxygen deficit (MAOD) in SKI. They also performed one repetition maximum (1RM), half-squat (RUN) or 1RM lat pull-down (SKI).</p><p><strong>Results: </strong>Moderate correlations were found between changes in both MAP and maximal strength and changes in 800TT for SKI (r = - 0.51 and r = - 0.51, respectively, p < 0.05). For RUN, MAS and the 0.8 MAS + 0.2 MSS equation correlated (r = - 0.71 and r = - 0.73, respectively, p < 0.01) with 800TT. VO<sub>2peak</sub> was the most important contributor to MAS improvements (RUN) while C<sub>DP</sub> was the most important contributor to MAP improvements (SKI). No correlations were found between changes in TTE at 130% MAS or MAP and, or MAOD, and changes in 800TT, for neither RUN nor SKI. The results from the present study suggest focusing on training to improve maximal oxygen uptake (VO<sub>2max</sub>), work economy and maximal sprint speed to improve performance in middle-distance running and ski sprinting.</p>\",\"PeriodicalId\":12005,\"journal\":{\"name\":\"European Journal of Applied Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00421-025-05765-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-025-05765-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Determining physiologic variables for changes in 800-m running and 800-m ski ergometer performance.
Purpose: This study investigates associations between changes in 800 m time trial performance in running or ski ergometer double poling, and changes in physiologic variables after a seven-week observational period. Forty six athletes ranging from recreational to elite level, participated in either a run (RUN) or a ski ergometer (SKI) observational study.
Methods: The participants performed pre- and post-tests in; 800-m time trial (800TT), 100-m time trial (MSS or MSP), peak oxygen uptake (VO2peak), oxygen cost of running (CR) or double poling (CDP), time to exhaustion (TTE) at 130% maximal aerobic speed (MAS) or maximal aerobic power (MAP), and maximal accumulated oxygen deficit (MAOD) in SKI. They also performed one repetition maximum (1RM), half-squat (RUN) or 1RM lat pull-down (SKI).
Results: Moderate correlations were found between changes in both MAP and maximal strength and changes in 800TT for SKI (r = - 0.51 and r = - 0.51, respectively, p < 0.05). For RUN, MAS and the 0.8 MAS + 0.2 MSS equation correlated (r = - 0.71 and r = - 0.73, respectively, p < 0.01) with 800TT. VO2peak was the most important contributor to MAS improvements (RUN) while CDP was the most important contributor to MAP improvements (SKI). No correlations were found between changes in TTE at 130% MAS or MAP and, or MAOD, and changes in 800TT, for neither RUN nor SKI. The results from the present study suggest focusing on training to improve maximal oxygen uptake (VO2max), work economy and maximal sprint speed to improve performance in middle-distance running and ski sprinting.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.