使用纳米颗粒负载融合蛋白靶向干预肥胖相关心房纤维化。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Changying Wang, Xiaodong Zhang, Guangwei Zeng
{"title":"使用纳米颗粒负载融合蛋白靶向干预肥胖相关心房纤维化。","authors":"Changying Wang, Xiaodong Zhang, Guangwei Zeng","doi":"10.1007/s10495-025-02104-1","DOIUrl":null,"url":null,"abstract":"<p><p>The association between obesity and atrial fibrillation (AF) has garnered increasing attention. Obesity is a significant risk factor for cardiovascular diseases and promotes the occurrence of AF through multiple mechanisms. This study aims to explore the molecular mechanisms of obesity-induced AF using GLP-1R/GIPR dual-target agonist fusion protein (Fc) loaded into adipose-derived mesenchymal stem cell (ADSC) exosome-liposome hybrid nanoparticles (LE@Fc NPs). We successfully constructed and purified the Fc, verifying its purity and functional activity through SDS-PAGE and UV absorption spectroscopy. The fusion protein was then loaded into nanovesicles, and their morphology, size, and stability were assessed using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). In vitro experiments demonstrated that LE@Fc NPs exhibit high fusion efficiency and targeted delivery capability. In vivo experimental results show that LE@Fc NPs significantly inhibit ferroptosis in the epicardial adipose tissue (EAT) of obese mice (iron content: 3.69 ± 0.36 vs. 0.88 ± 0.09), by restoring GSH levels (0.45 ± 0.08 vs. 0.87 ± 0.08) and Gpx4 expression (0.32 ± 0.06 vs. 1.01 ± 0.16), and reducing ROS (12.01 ± 0.95 vs. 2.68 ± 0.17), MDA (3.17 ± 0.29 vs. 0.95 ± 0.09), and 4-HNE (3.74 ± 0.51 vs. 0.91 ± 0.09) levels. Furthermore, LE@Fc NPs treatment significantly improved the inflammatory response (IL-1β: 44.08 ± 3.74 vs. 12.07 ± 0.65, IL-6: 515.59 ± 47.70 vs. 288.43 ± 16.81, MCP-1: 1401.04 ± 194.88 vs. 600.28 ± 45.54, TNF-α: 39.96 ± 2.48 vs. 18.01 ± 0.85). LE@Fc NPs also reduced atrial fibrosis, thereby effectively lowering the incidence of AF. Echocardiography and electrocardiogram monitoring revealed that LE@Fc NPs treatment significantly improved atrial remodeling and reduced the occurrence of AF in obese mice. In addition, LE@Fc NPs significantly improved obesity-induced systemic inflammation and metabolic disorders. In conclusion, LE@Fc NPs show great potential for the treatment of obesity-related AF.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted intervention in obesity-associated atrial fibrosis using nanoparticle-loaded fusion protein.\",\"authors\":\"Changying Wang, Xiaodong Zhang, Guangwei Zeng\",\"doi\":\"10.1007/s10495-025-02104-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The association between obesity and atrial fibrillation (AF) has garnered increasing attention. Obesity is a significant risk factor for cardiovascular diseases and promotes the occurrence of AF through multiple mechanisms. This study aims to explore the molecular mechanisms of obesity-induced AF using GLP-1R/GIPR dual-target agonist fusion protein (Fc) loaded into adipose-derived mesenchymal stem cell (ADSC) exosome-liposome hybrid nanoparticles (LE@Fc NPs). We successfully constructed and purified the Fc, verifying its purity and functional activity through SDS-PAGE and UV absorption spectroscopy. The fusion protein was then loaded into nanovesicles, and their morphology, size, and stability were assessed using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). In vitro experiments demonstrated that LE@Fc NPs exhibit high fusion efficiency and targeted delivery capability. In vivo experimental results show that LE@Fc NPs significantly inhibit ferroptosis in the epicardial adipose tissue (EAT) of obese mice (iron content: 3.69 ± 0.36 vs. 0.88 ± 0.09), by restoring GSH levels (0.45 ± 0.08 vs. 0.87 ± 0.08) and Gpx4 expression (0.32 ± 0.06 vs. 1.01 ± 0.16), and reducing ROS (12.01 ± 0.95 vs. 2.68 ± 0.17), MDA (3.17 ± 0.29 vs. 0.95 ± 0.09), and 4-HNE (3.74 ± 0.51 vs. 0.91 ± 0.09) levels. Furthermore, LE@Fc NPs treatment significantly improved the inflammatory response (IL-1β: 44.08 ± 3.74 vs. 12.07 ± 0.65, IL-6: 515.59 ± 47.70 vs. 288.43 ± 16.81, MCP-1: 1401.04 ± 194.88 vs. 600.28 ± 45.54, TNF-α: 39.96 ± 2.48 vs. 18.01 ± 0.85). LE@Fc NPs also reduced atrial fibrosis, thereby effectively lowering the incidence of AF. Echocardiography and electrocardiogram monitoring revealed that LE@Fc NPs treatment significantly improved atrial remodeling and reduced the occurrence of AF in obese mice. In addition, LE@Fc NPs significantly improved obesity-induced systemic inflammation and metabolic disorders. In conclusion, LE@Fc NPs show great potential for the treatment of obesity-related AF.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-025-02104-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02104-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥胖与心房颤动(AF)之间的关系已引起越来越多的关注。肥胖是心血管疾病的重要危险因素,并通过多种机制促进房颤的发生。本研究旨在通过将GLP-1R/GIPR双靶点激动剂融合蛋白(Fc)加载到脂肪源性间充质干细胞(ADSC)外泌体-脂质体杂交纳米颗粒(LE@Fc NPs)中,探讨肥胖诱导AF的分子机制。我们成功构建并纯化了Fc,并通过SDS-PAGE和UV吸收光谱验证了其纯度和功能活性。然后将融合蛋白装入纳米囊泡中,并使用透射电子显微镜(TEM)、纳米颗粒跟踪分析(NTA)和动态光散射(DLS)评估其形态、大小和稳定性。体外实验表明,LE@Fc NPs具有较高的融合效率和靶向递送能力。体内实验结果表明,LE@Fc NPs通过恢复GSH水平(0.45±0.08 vs. 0.87±0.08)和Gpx4表达(0.32±0.06 vs. 1.01±0.16),降低ROS(12.01±0.95 vs. 2.68±0.17)、MDA(3.17±0.29 vs. 0.95±0.09)和4-HNE(3.74±0.51 vs. 0.91±0.09)水平,显著抑制肥胖小鼠心外膜脂肪组织(EAT)中的铁含量(3.69±0.36 vs. 0.88±0.09)。此外,LE@Fc NPs治疗显著改善炎症反应(IL-1β: 44.08±3.74比12.07±0.65,IL-6: 515.59±47.70比288.43±16.81,MCP-1: 1401.04±194.88比600.28±45.54,TNF-α: 39.96±2.48比18.01±0.85)。LE@Fc NPs还可减少心房纤维化,从而有效降低房颤的发生率。超声心动图和心电图监测显示,LE@Fc NPs治疗可显著改善肥胖小鼠心房重构,减少房颤的发生。此外,LE@Fc NPs显著改善肥胖引起的全身性炎症和代谢紊乱。总之,LE@Fc NPs在治疗肥胖相关房颤方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted intervention in obesity-associated atrial fibrosis using nanoparticle-loaded fusion protein.

The association between obesity and atrial fibrillation (AF) has garnered increasing attention. Obesity is a significant risk factor for cardiovascular diseases and promotes the occurrence of AF through multiple mechanisms. This study aims to explore the molecular mechanisms of obesity-induced AF using GLP-1R/GIPR dual-target agonist fusion protein (Fc) loaded into adipose-derived mesenchymal stem cell (ADSC) exosome-liposome hybrid nanoparticles (LE@Fc NPs). We successfully constructed and purified the Fc, verifying its purity and functional activity through SDS-PAGE and UV absorption spectroscopy. The fusion protein was then loaded into nanovesicles, and their morphology, size, and stability were assessed using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). In vitro experiments demonstrated that LE@Fc NPs exhibit high fusion efficiency and targeted delivery capability. In vivo experimental results show that LE@Fc NPs significantly inhibit ferroptosis in the epicardial adipose tissue (EAT) of obese mice (iron content: 3.69 ± 0.36 vs. 0.88 ± 0.09), by restoring GSH levels (0.45 ± 0.08 vs. 0.87 ± 0.08) and Gpx4 expression (0.32 ± 0.06 vs. 1.01 ± 0.16), and reducing ROS (12.01 ± 0.95 vs. 2.68 ± 0.17), MDA (3.17 ± 0.29 vs. 0.95 ± 0.09), and 4-HNE (3.74 ± 0.51 vs. 0.91 ± 0.09) levels. Furthermore, LE@Fc NPs treatment significantly improved the inflammatory response (IL-1β: 44.08 ± 3.74 vs. 12.07 ± 0.65, IL-6: 515.59 ± 47.70 vs. 288.43 ± 16.81, MCP-1: 1401.04 ± 194.88 vs. 600.28 ± 45.54, TNF-α: 39.96 ± 2.48 vs. 18.01 ± 0.85). LE@Fc NPs also reduced atrial fibrosis, thereby effectively lowering the incidence of AF. Echocardiography and electrocardiogram monitoring revealed that LE@Fc NPs treatment significantly improved atrial remodeling and reduced the occurrence of AF in obese mice. In addition, LE@Fc NPs significantly improved obesity-induced systemic inflammation and metabolic disorders. In conclusion, LE@Fc NPs show great potential for the treatment of obesity-related AF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信