吖啶-尿素偶联物在体孔和二氧化硅纳米孔体系中的阴离子识别性能。

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Sho Kimura, Akira Yamaguchi
{"title":"吖啶-尿素偶联物在体孔和二氧化硅纳米孔体系中的阴离子识别性能。","authors":"Sho Kimura, Akira Yamaguchi","doi":"10.1007/s44211-025-00784-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the anion recognition properties of acridine-urea conjugate (AcU) in bulk DMSO and silica nanopore. The free AcU in bulk DMSO was in tautomeric equilibrium between fluorescent amino form (a-AcU) and non-fluorescent imino form (i-AcU). Owing to this tautomerization of AcU, the free AcU worked as fluorescence enhancement sensing by hydrogen bonds mediated complexation between urea unit and anion. The estimated dissociation constants were 1.4 ± 0.2 mM for CH<sub>3</sub>COO<sup>-</sup> and 3.1 ± 1.0 mM for H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, whereas those for Cl<sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, and HSO<sub>4</sub><sup>-</sup>were quite large. The hydrogen bond between urea unit and anion was also available for the anion recognition by AcU immobilized at the pore surface of mesoporous silica when the anion concentration is above 0.2 mM. In addition, we found that fluorescence of protonated a-AcU (a-AcHU<sup>+</sup>) could also be utilized for the recognition of weak acid anions over strong acid anions when the anion concentration is below 0.1 mM. The AcU@MPS with two recognition system has potential application for the anion recognition.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion recognition properties of acridine-urea conjugate in bulk and silica nanopore systems.\",\"authors\":\"Sho Kimura, Akira Yamaguchi\",\"doi\":\"10.1007/s44211-025-00784-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the anion recognition properties of acridine-urea conjugate (AcU) in bulk DMSO and silica nanopore. The free AcU in bulk DMSO was in tautomeric equilibrium between fluorescent amino form (a-AcU) and non-fluorescent imino form (i-AcU). Owing to this tautomerization of AcU, the free AcU worked as fluorescence enhancement sensing by hydrogen bonds mediated complexation between urea unit and anion. The estimated dissociation constants were 1.4 ± 0.2 mM for CH<sub>3</sub>COO<sup>-</sup> and 3.1 ± 1.0 mM for H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, whereas those for Cl<sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, and HSO<sub>4</sub><sup>-</sup>were quite large. The hydrogen bond between urea unit and anion was also available for the anion recognition by AcU immobilized at the pore surface of mesoporous silica when the anion concentration is above 0.2 mM. In addition, we found that fluorescence of protonated a-AcU (a-AcHU<sup>+</sup>) could also be utilized for the recognition of weak acid anions over strong acid anions when the anion concentration is below 0.1 mM. The AcU@MPS with two recognition system has potential application for the anion recognition.</p>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s44211-025-00784-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-025-00784-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了吖啶-尿素偶联物(AcU)在DMSO和二氧化硅纳米孔中的阴离子识别性能。散装DMSO中的游离AcU在荧光氨基形式(a-AcU)和非荧光亚氨基形式(i-AcU)之间呈互变异构平衡。由于AcU的这种互变异构化,游离AcU通过氢键介导的尿素单元与阴离子之间的络合作用起到荧光增强传感的作用。CH3COO-的解离常数为1.4±0.2 mM, H2PO4-的解离常数为3.1±1.0 mM,而Cl-、ClO4-和hso4的解离常数相当大。当阴离子浓度大于0.2 mM时,固定在介孔二氧化硅孔表面的AcU也可以利用尿素单元与阴离子之间的氢键来识别阴离子。此外,我们发现质子化的a-AcU (a-AcHU+)在阴离子浓度小于0.1 mM时也可以利用荧光来识别弱酸性阴离子而不是强酸性阴离子。AcU@MPS双识别系统在阴离子识别方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anion recognition properties of acridine-urea conjugate in bulk and silica nanopore systems.

This study investigated the anion recognition properties of acridine-urea conjugate (AcU) in bulk DMSO and silica nanopore. The free AcU in bulk DMSO was in tautomeric equilibrium between fluorescent amino form (a-AcU) and non-fluorescent imino form (i-AcU). Owing to this tautomerization of AcU, the free AcU worked as fluorescence enhancement sensing by hydrogen bonds mediated complexation between urea unit and anion. The estimated dissociation constants were 1.4 ± 0.2 mM for CH3COO- and 3.1 ± 1.0 mM for H2PO4-, whereas those for Cl-, ClO4-, and HSO4-were quite large. The hydrogen bond between urea unit and anion was also available for the anion recognition by AcU immobilized at the pore surface of mesoporous silica when the anion concentration is above 0.2 mM. In addition, we found that fluorescence of protonated a-AcU (a-AcHU+) could also be utilized for the recognition of weak acid anions over strong acid anions when the anion concentration is below 0.1 mM. The AcU@MPS with two recognition system has potential application for the anion recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信