{"title":"α-Al2O3对CO的表面依赖同位素吸附:弱相互作用和零点能的作用。","authors":"Qun Yang, Xiyue Cheng, Qian Xu, Shuiquan Deng","doi":"10.3390/molecules30092067","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon isotopes, particularly <sup>13</sup>C, are critical for applications in food authentication, biomedical diagnostics, and metabolic research; however, their efficient separation remains challenging due to their low natural abundance. This study investigates the adsorption behavior of <sup>12</sup>CO and <sup>13</sup>CO on various low-index α-Al<sub>2</sub>O<sub>3</sub> surfaces as a strategy for isotope separation. Density functional theory (DFT) calculations with D3 (BJ) dispersion corrections were employed to optimize surface models for five representative α-Al<sub>2</sub>O<sub>3</sub> facets. Nine adsorption configurations were systematically evaluated by optimizing geometric structures, computing adsorption enthalpies with zero-point energy corrections, and performing Bader charge and charge density difference analyses to elucidate interfacial interactions. The results reveal that CO preferentially adsorbs in a vertical configuration via its carbon end at Al sites, with the (0001) surface exhibiting the lowest surface energy and most favorable adsorption characteristics. Furthermore, we found that facets with lower surface energy not only facilitate stronger CO adsorption but also demonstrate pronounced adsorption enthalpy differences between <sup>12</sup>CO and <sup>13</sup>CO, driven by vibrational zero-point energy disparities. These findings highlight the potential of low adsorption enthalpy surfaces, particularly (0001), (011¯2), and (112¯0), for enhancing isotope separation efficiency, providing valuable insights for the design of advanced separation materials.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surface-Dependent Isotopic Adsorption of CO on α-Al<sub>2</sub>O<sub>3</sub>: Role of Weak Interactions and Zero-Point Energy.\",\"authors\":\"Qun Yang, Xiyue Cheng, Qian Xu, Shuiquan Deng\",\"doi\":\"10.3390/molecules30092067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon isotopes, particularly <sup>13</sup>C, are critical for applications in food authentication, biomedical diagnostics, and metabolic research; however, their efficient separation remains challenging due to their low natural abundance. This study investigates the adsorption behavior of <sup>12</sup>CO and <sup>13</sup>CO on various low-index α-Al<sub>2</sub>O<sub>3</sub> surfaces as a strategy for isotope separation. Density functional theory (DFT) calculations with D3 (BJ) dispersion corrections were employed to optimize surface models for five representative α-Al<sub>2</sub>O<sub>3</sub> facets. Nine adsorption configurations were systematically evaluated by optimizing geometric structures, computing adsorption enthalpies with zero-point energy corrections, and performing Bader charge and charge density difference analyses to elucidate interfacial interactions. The results reveal that CO preferentially adsorbs in a vertical configuration via its carbon end at Al sites, with the (0001) surface exhibiting the lowest surface energy and most favorable adsorption characteristics. Furthermore, we found that facets with lower surface energy not only facilitate stronger CO adsorption but also demonstrate pronounced adsorption enthalpy differences between <sup>12</sup>CO and <sup>13</sup>CO, driven by vibrational zero-point energy disparities. These findings highlight the potential of low adsorption enthalpy surfaces, particularly (0001), (011¯2), and (112¯0), for enhancing isotope separation efficiency, providing valuable insights for the design of advanced separation materials.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092067\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092067","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Surface-Dependent Isotopic Adsorption of CO on α-Al2O3: Role of Weak Interactions and Zero-Point Energy.
Carbon isotopes, particularly 13C, are critical for applications in food authentication, biomedical diagnostics, and metabolic research; however, their efficient separation remains challenging due to their low natural abundance. This study investigates the adsorption behavior of 12CO and 13CO on various low-index α-Al2O3 surfaces as a strategy for isotope separation. Density functional theory (DFT) calculations with D3 (BJ) dispersion corrections were employed to optimize surface models for five representative α-Al2O3 facets. Nine adsorption configurations were systematically evaluated by optimizing geometric structures, computing adsorption enthalpies with zero-point energy corrections, and performing Bader charge and charge density difference analyses to elucidate interfacial interactions. The results reveal that CO preferentially adsorbs in a vertical configuration via its carbon end at Al sites, with the (0001) surface exhibiting the lowest surface energy and most favorable adsorption characteristics. Furthermore, we found that facets with lower surface energy not only facilitate stronger CO adsorption but also demonstrate pronounced adsorption enthalpy differences between 12CO and 13CO, driven by vibrational zero-point energy disparities. These findings highlight the potential of low adsorption enthalpy surfaces, particularly (0001), (011¯2), and (112¯0), for enhancing isotope separation efficiency, providing valuable insights for the design of advanced separation materials.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.