时间,控制和神经系统。

IF 12.1 1区 医学 Q1 NEUROSCIENCES
Caroline Haimerl, Filipe S Rodrigues, Joseph J Paton
{"title":"时间,控制和神经系统。","authors":"Caroline Haimerl, Filipe S Rodrigues, Joseph J Paton","doi":"10.1146/annurev-neuro-112723-025348","DOIUrl":null,"url":null,"abstract":"<p><p>Because organisms are able to sense its passage, it is perhaps tempting to treat time as a sensory modality, akin to vision or audition. Indeed, certain features of sensory estimation, such as Weber's law, apply to timing and sensation alike. However, from an organismal perspective, time is a derived feature of other signals, not a stimulus that can be readily transduced by sensory receptors. Its importance for biology lies in the fact that the physical world comprises a complex dynamical system. The multiscale spatiotemporal structure of sensory and internally generated signals within an organism is the informational fabric underlying its ability to control behavior. Viewed this way, temporal computations assume a more fundamental role than is implied by treating time as just another element of the experienced world. Thus, in this review we focus on temporal processing as a means of approaching the more general problem of how the nervous system produces adaptive behavior.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time, Control, and the Nervous System.\",\"authors\":\"Caroline Haimerl, Filipe S Rodrigues, Joseph J Paton\",\"doi\":\"10.1146/annurev-neuro-112723-025348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because organisms are able to sense its passage, it is perhaps tempting to treat time as a sensory modality, akin to vision or audition. Indeed, certain features of sensory estimation, such as Weber's law, apply to timing and sensation alike. However, from an organismal perspective, time is a derived feature of other signals, not a stimulus that can be readily transduced by sensory receptors. Its importance for biology lies in the fact that the physical world comprises a complex dynamical system. The multiscale spatiotemporal structure of sensory and internally generated signals within an organism is the informational fabric underlying its ability to control behavior. Viewed this way, temporal computations assume a more fundamental role than is implied by treating time as just another element of the experienced world. Thus, in this review we focus on temporal processing as a means of approaching the more general problem of how the nervous system produces adaptive behavior.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-112723-025348\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-112723-025348","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

因为生物体能够感知时间的流逝,所以将时间视为一种感官形态可能很诱人,类似于视觉或听觉。的确,感官估计的某些特征,如韦伯定律,同样适用于时间和感觉。然而,从有机体的角度来看,时间是其他信号的衍生特征,而不是一种可以被感觉受体轻易转导的刺激。它对生物学的重要性在于,物理世界是由一个复杂的动力系统组成的。在一个有机体中,感觉和内部产生的信号的多尺度时空结构是其控制行为能力的信息结构。从这个角度来看,时间计算比将时间视为经验世界的另一个元素所暗示的更重要。因此,在这篇综述中,我们把重点放在时间处理上,作为一种接近神经系统如何产生适应性行为这一更普遍问题的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time, Control, and the Nervous System.

Because organisms are able to sense its passage, it is perhaps tempting to treat time as a sensory modality, akin to vision or audition. Indeed, certain features of sensory estimation, such as Weber's law, apply to timing and sensation alike. However, from an organismal perspective, time is a derived feature of other signals, not a stimulus that can be readily transduced by sensory receptors. Its importance for biology lies in the fact that the physical world comprises a complex dynamical system. The multiscale spatiotemporal structure of sensory and internally generated signals within an organism is the informational fabric underlying its ability to control behavior. Viewed this way, temporal computations assume a more fundamental role than is implied by treating time as just another element of the experienced world. Thus, in this review we focus on temporal processing as a means of approaching the more general problem of how the nervous system produces adaptive behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信