Pablo Ortiz, Amit Narawane, Ryan P McNabb, Anthony N Kuo, Joseph A Izatt, Mark Draelos
{"title":"传感器驱动的机器人对齐光学相干断层扫描视网膜体积的数字运动校正。","authors":"Pablo Ortiz, Amit Narawane, Ryan P McNabb, Anthony N Kuo, Joseph A Izatt, Mark Draelos","doi":"10.1364/BOE.551186","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) has revolutionized diagnostics in retinal ophthalmology. Traditional OCT requires minimal relative motion between the subject and scanner, which is difficult to achieve with handheld devices and/or non-stabilized subjects. We recently introduced robotically-aligned OCT (RAOCT) as an alternative that promises to alleviate these minimal-movement requirements by tracking the subject and compensating for their motion with dynamic hardware components in real-time. However, hardware and image processing delays lead to residual motion artifacts even after automatic alignment and motion compensation. Here, we introduce a novel sensor-driven digital motion correction approach that overcomes these shortcomings. Our method leverages synchronized sensing of both the subject's eye and the scanner hardware to continuously estimate the imaging system state during acquisition. The A-scans are then remapped using a ray-tracing model of the system at the precise moment of acquisition. We demonstrate that, in addition to motion compensation from RAOCT, our method further reduces residual artifacts by 88.3 %, 80.4 %, and 62.6 % across axial, lateral, and rotational motions, respectively. We also show our correction in human retinal OCT images where residual errors from acquisition were reduced down to 12.4 µm, 0.11°, and 0.39° for axial, lateral, and rotational motion, respectively.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1616-1637"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensor-driven digital motion correction of robotically-aligned optical coherence tomography retinal volumes.\",\"authors\":\"Pablo Ortiz, Amit Narawane, Ryan P McNabb, Anthony N Kuo, Joseph A Izatt, Mark Draelos\",\"doi\":\"10.1364/BOE.551186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence tomography (OCT) has revolutionized diagnostics in retinal ophthalmology. Traditional OCT requires minimal relative motion between the subject and scanner, which is difficult to achieve with handheld devices and/or non-stabilized subjects. We recently introduced robotically-aligned OCT (RAOCT) as an alternative that promises to alleviate these minimal-movement requirements by tracking the subject and compensating for their motion with dynamic hardware components in real-time. However, hardware and image processing delays lead to residual motion artifacts even after automatic alignment and motion compensation. Here, we introduce a novel sensor-driven digital motion correction approach that overcomes these shortcomings. Our method leverages synchronized sensing of both the subject's eye and the scanner hardware to continuously estimate the imaging system state during acquisition. The A-scans are then remapped using a ray-tracing model of the system at the precise moment of acquisition. We demonstrate that, in addition to motion compensation from RAOCT, our method further reduces residual artifacts by 88.3 %, 80.4 %, and 62.6 % across axial, lateral, and rotational motions, respectively. We also show our correction in human retinal OCT images where residual errors from acquisition were reduced down to 12.4 µm, 0.11°, and 0.39° for axial, lateral, and rotational motion, respectively.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 4\",\"pages\":\"1616-1637\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.551186\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.551186","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Sensor-driven digital motion correction of robotically-aligned optical coherence tomography retinal volumes.
Optical coherence tomography (OCT) has revolutionized diagnostics in retinal ophthalmology. Traditional OCT requires minimal relative motion between the subject and scanner, which is difficult to achieve with handheld devices and/or non-stabilized subjects. We recently introduced robotically-aligned OCT (RAOCT) as an alternative that promises to alleviate these minimal-movement requirements by tracking the subject and compensating for their motion with dynamic hardware components in real-time. However, hardware and image processing delays lead to residual motion artifacts even after automatic alignment and motion compensation. Here, we introduce a novel sensor-driven digital motion correction approach that overcomes these shortcomings. Our method leverages synchronized sensing of both the subject's eye and the scanner hardware to continuously estimate the imaging system state during acquisition. The A-scans are then remapped using a ray-tracing model of the system at the precise moment of acquisition. We demonstrate that, in addition to motion compensation from RAOCT, our method further reduces residual artifacts by 88.3 %, 80.4 %, and 62.6 % across axial, lateral, and rotational motions, respectively. We also show our correction in human retinal OCT images where residual errors from acquisition were reduced down to 12.4 µm, 0.11°, and 0.39° for axial, lateral, and rotational motion, respectively.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.