氯丙嗪通过促进通道失活直接抑制Kv1.3通道。

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Seo-In Park, Soobeen Hwang, Young Lee, Hee-Yoon Lee, Soohyun Kim, Junseo Hong, Su-Hyun Jo, Se-Young Choi
{"title":"氯丙嗪通过促进通道失活直接抑制Kv1.3通道。","authors":"Seo-In Park, Soobeen Hwang, Young Lee, Hee-Yoon Lee, Soohyun Kim, Junseo Hong, Su-Hyun Jo, Se-Young Choi","doi":"10.1186/s13041-025-01211-z","DOIUrl":null,"url":null,"abstract":"<p><p>Kv1.3 channels in microglia are pivotal in regulating neuroinflammation. The antipsychotic chlorpromazine (CPZ) demonstrates anti-inflammatory effects by decreasing Kv1.3 activity in mPFC microglia. However, the precise mechanism of CPZ's effect in the mPFC remains unclear, given that CPZ is known to inhibit dopamine receptors and the mPFC contains various cell types with dopamine receptors. In this study, we investigate how CPZ inhibits Kv1.3 channels using human Kv1.3 channel-expressing Xenopus laevis oocytes. CPZ directly inhibits Kv1.3 channel currents in a concentration-dependent manner. The CPZ-mediated Kv1.3 channel inhibition is not voltage-dependent, and CPZ accelerates Kv1.3 channel inactivation without significantly affecting its activation. Our findings suggest that CPZ directly blocks Kv1.3 channels without involving other ion channels or receptors, including dopamine receptors, thereby contributing to the understanding of its neuroinflammation-suppressing mechanism.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"41"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chlorpromazine directly inhibits Kv1.3 channels by facilitating the inactivation of channels.\",\"authors\":\"Seo-In Park, Soobeen Hwang, Young Lee, Hee-Yoon Lee, Soohyun Kim, Junseo Hong, Su-Hyun Jo, Se-Young Choi\",\"doi\":\"10.1186/s13041-025-01211-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kv1.3 channels in microglia are pivotal in regulating neuroinflammation. The antipsychotic chlorpromazine (CPZ) demonstrates anti-inflammatory effects by decreasing Kv1.3 activity in mPFC microglia. However, the precise mechanism of CPZ's effect in the mPFC remains unclear, given that CPZ is known to inhibit dopamine receptors and the mPFC contains various cell types with dopamine receptors. In this study, we investigate how CPZ inhibits Kv1.3 channels using human Kv1.3 channel-expressing Xenopus laevis oocytes. CPZ directly inhibits Kv1.3 channel currents in a concentration-dependent manner. The CPZ-mediated Kv1.3 channel inhibition is not voltage-dependent, and CPZ accelerates Kv1.3 channel inactivation without significantly affecting its activation. Our findings suggest that CPZ directly blocks Kv1.3 channels without involving other ion channels or receptors, including dopamine receptors, thereby contributing to the understanding of its neuroinflammation-suppressing mechanism.</p>\",\"PeriodicalId\":18851,\"journal\":{\"name\":\"Molecular Brain\",\"volume\":\"18 1\",\"pages\":\"41\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13041-025-01211-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01211-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小胶质细胞中的Kv1.3通道在调节神经炎症中起关键作用。抗精神病药氯丙嗪(CPZ)通过降低mPFC小胶质细胞Kv1.3活性显示抗炎作用。然而,CPZ在mPFC中作用的确切机制尚不清楚,因为CPZ已知可以抑制多巴胺受体,并且mPFC中含有多种具有多巴胺受体的细胞类型。在本研究中,我们利用表达人类Kv1.3通道的非洲爪蟾卵母细胞来研究CPZ如何抑制Kv1.3通道。CPZ以浓度依赖的方式直接抑制Kv1.3通道电流。CPZ介导的Kv1.3通道抑制不依赖于电压,CPZ加速Kv1.3通道失活,但不显著影响其激活。我们的研究结果表明,CPZ直接阻断Kv1.3通道,而不涉及其他离子通道或受体,包括多巴胺受体,从而有助于理解其神经炎症抑制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chlorpromazine directly inhibits Kv1.3 channels by facilitating the inactivation of channels.

Kv1.3 channels in microglia are pivotal in regulating neuroinflammation. The antipsychotic chlorpromazine (CPZ) demonstrates anti-inflammatory effects by decreasing Kv1.3 activity in mPFC microglia. However, the precise mechanism of CPZ's effect in the mPFC remains unclear, given that CPZ is known to inhibit dopamine receptors and the mPFC contains various cell types with dopamine receptors. In this study, we investigate how CPZ inhibits Kv1.3 channels using human Kv1.3 channel-expressing Xenopus laevis oocytes. CPZ directly inhibits Kv1.3 channel currents in a concentration-dependent manner. The CPZ-mediated Kv1.3 channel inhibition is not voltage-dependent, and CPZ accelerates Kv1.3 channel inactivation without significantly affecting its activation. Our findings suggest that CPZ directly blocks Kv1.3 channels without involving other ion channels or receptors, including dopamine receptors, thereby contributing to the understanding of its neuroinflammation-suppressing mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信