{"title":"基于多尺度熵统计的二维单幅三维多孔介质分层重建。","authors":"Dong Dong Chen, Xiao Rui Wang, Jiao Fen Nan","doi":"10.1111/jmi.13418","DOIUrl":null,"url":null,"abstract":"<p>Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"299 1","pages":"49-64"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical reconstruction of three-dimensional porous media from a single two-dimensional image with multiscale entropy statistics\",\"authors\":\"Dong Dong Chen, Xiao Rui Wang, Jiao Fen Nan\",\"doi\":\"10.1111/jmi.13418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"299 1\",\"pages\":\"49-64\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13418\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13418","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Hierarchical reconstruction of three-dimensional porous media from a single two-dimensional image with multiscale entropy statistics
Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.