基于多尺度熵统计的二维单幅三维多孔介质分层重建。

IF 1.9 4区 工程技术 Q3 MICROSCOPY
Dong Dong Chen, Xiao Rui Wang, Jiao Fen Nan
{"title":"基于多尺度熵统计的二维单幅三维多孔介质分层重建。","authors":"Dong Dong Chen,&nbsp;Xiao Rui Wang,&nbsp;Jiao Fen Nan","doi":"10.1111/jmi.13418","DOIUrl":null,"url":null,"abstract":"<p>Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"299 1","pages":"49-64"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical reconstruction of three-dimensional porous media from a single two-dimensional image with multiscale entropy statistics\",\"authors\":\"Dong Dong Chen,&nbsp;Xiao Rui Wang,&nbsp;Jiao Fen Nan\",\"doi\":\"10.1111/jmi.13418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"299 1\",\"pages\":\"49-64\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13418\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13418","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

尽管三维成像技术不断发展,但从单幅二维图像中重建三维微观结构仍然是一个突出的问题。本文提出了一种基于模拟退火的分层重建方法,即分层模拟退火法(HSA),该方法以多尺度熵统计作为形态学信息描述符,从单幅二维(2D)图像中重建其相应的三维(3D)微观结构。采用分层模拟退火(HSA)方法和模拟退火(SA)方法对单幅二维图像进行二维和三维微观结构重建,其中两点聚类函数和标准两点相关函数作为重建二维和三维结构的测量指标。从二维重建结果可以看出,HSA方法和SA方法的重建不仅捕获了与原始图像相似的形态学信息,而且在两点聚类函数上与目标微观结构有很好的一致性。对于重建的三维微观结构,两点相关函数的比较表明,HSA方法和SA方法都能有效地重建其三维微观结构,HSA方法和SA方法的重建时间的比较表明,HSA方法的重建速度比SA方法快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical reconstruction of three-dimensional porous media from a single two-dimensional image with multiscale entropy statistics

Despite the development of 3D imaging technology, the reconstruction of three-dimensional (3D) microstructure from a single two-dimensional (2D) image is still a prominent problem. In this paper, we propose a hierarchical reconstruction method based on simulated annealing, which is named hierarchical simulated annealing method (HSA), with the multiscale entropy statistics as the morphological information descriptor to reconstruct its corresponding three-dimensional (3D) microstructure from a single two-dimensional (2D) image. Both hierarchical simulated annealing (HSA) method and simulated annealing (SA) method are used to perform on the 2D and 3D microstructure reconstruction from a single 2D image, where the two-point cluster function and the standard two-point correlation function are used as the measurement metrics for the reconstructed 2D and 3D structures. From the 2D reconstructions, it can be seen that all the reconstructions of HSA method and SA method not only captures the similar morphological information with the original images, but also have a good agreement with the target microstructures in two-point cluster function. For the reconstructed 3D microstructures, the comparison of two-point correlation function shows that both HSA method and SA method can effectively reconstruct its 3D microstructure and the comparison of the reconstruction time between HSA method and SA method shows that the reconstruction speed of HSA method is an order of magnitude faster than that of SA method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信