Ádám Kerek, István Román, Ábel Szabó, Dóra Kovács, Gábor Kardos, László Kovács, Ákos Jerzsele
{"title":"大肠杆菌中抗生素耐药基因的文献综述。","authors":"Ádám Kerek, István Román, Ábel Szabó, Dóra Kovács, Gábor Kardos, László Kovács, Ákos Jerzsele","doi":"10.1080/1040841X.2025.2492156","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. <i>Escherichia coli</i> (<i>E. coli</i>) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in <i>E. coli</i> bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of <i>E. coli</i> infections, but also to cover the entire resistance gene carriage in <i>E. coli</i>, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-35"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic resistance genes in <i>Escherichia coli</i> - literature review.\",\"authors\":\"Ádám Kerek, István Román, Ábel Szabó, Dóra Kovács, Gábor Kardos, László Kovács, Ákos Jerzsele\",\"doi\":\"10.1080/1040841X.2025.2492156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. <i>Escherichia coli</i> (<i>E. coli</i>) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in <i>E. coli</i> bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of <i>E. coli</i> infections, but also to cover the entire resistance gene carriage in <i>E. coli</i>, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.</p>\",\"PeriodicalId\":10736,\"journal\":{\"name\":\"Critical Reviews in Microbiology\",\"volume\":\" \",\"pages\":\"1-35\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/1040841X.2025.2492156\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2025.2492156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antibiotic resistance genes in Escherichia coli - literature review.
Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.
期刊介绍:
Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.